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Sobolev embeddings into BMO, VMO, and L

Andrea Cianchi and Lubog Pick

Abstract. Let X be a rearrangement-invariant Banach function space on R™ and let V1 X
be the Sobolev space of functions whose gradient belongs to X. We give necessary and sufficient
conditions on X under which V1 X is continuously embedded into BMO or into Loo. In particular,
we show that Ln,co is the largest rearrangement-invariant space X such that V1X is continuously
embedded into BMO and, similarly, L,, 1 is the largest rearrangement-invariant space X such that
V1X is continuously embedded into Le,. We further show that V1 X is a subset of VMO if and
only if every function from X has an absolutely continuous norm in Ly ,oc. A compact inclusion
of V1X into C? is characterized as well.

1. Introduction

The space BMO of functions having bounded mean oscillation, introduced by
John and Nirenberg [JN], has proved to be particularly useful in various areas of
analysis, especially harmonic analysis (see [To] or [S, Chapter 4] and the references
given there) and interpolation theory (see [BS, Chapter 5]), as an appropriate sub-
stitute for Lo, when L, does not work.

The main objective of the present paper is to establish criteria for the mem-
bership of a function to BMO or to L., in terms of the summability properties
of its gradient, More precisely, we characterize all rearrangement-invariant (r.i.)
Banach function spaces X on R"™ such that the corresponding Sobolev space VX
of functions whose gradient belongs to X is continuously embedded into BMO or
into Lo,. Furthermore, we show that the Marcinkiewicz space L,, o is the largest
rearrangement-invariant space X such that V'X is continuously embedded into
BMO, whereas the Lorentz space L, is the largest rearrangement-invariant space
X such that V!X is continuously embedded into Lo,. Our conclusions bring some
new information to the study of the gap between Lo, and BMO (cf. [GJ], [LaP]
or [LP]). We also give a necessary and sufficient condition for VX to be uniformly
included into the space of functions with vanishing mean oscillation (VMO), which
has recently found applications in the theory of partial differential equations—
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see e.g. [CFL], [Ch], [BC]. Moreover, we prove that V!X CVMO if and only if
X C(Ln,oo)a, the subspace of L, o, containing functions with absolutely continuous
norms. Finally, we present a characterization of the compact embedding of W'X
into C.

Roughly speaking, in an r.i. space the norm depends only on the measure
of level sets of a function. This class of function spaces includes, for example,
Lebesgue, Lorentz, Lorentz—Zygmund, and Orlicz spaces. Thus, in particular, our
characterization reproduces the well-known results about embeddings of VX into
BMO, VMO, and L., when X is a Lebesgue space or a Lorentz space, and enables
us to deal with a more general class of Lorentz—Zygmund spaces. We also show that
L,, is the largest Orlicz space L4 such that V'L 4<»BMO, recovering thus a recent
result of [F], and that there does not exist any largest Orlicz space L4 such that
Vl L AT Loo .

The paper is organized as follows. Basic definitions and elementary properties
of the relevant function spaces are collected in Section 2. In Section 3 we state
the main results of the paper. Two inequalities, possibly of independent interest,
extending the Pdlya—Szegd principle for rearrangements (see e.g. [BZ], [T3]) and the
classical Poincaré inequality, are proved in Section 4. Section 5 contains proofs of
the main results. Some applications are presented in Section 6. We wish to thank
Nicola Fusco for pointing out to us the question that is dealt with in Theorem 3.3(i).

2. Preliminaries

Throughout the paper, A, stands for the n-dimensional Lebesgue measure. The
letter C' will denote various constants independent of appropriate quantities. By
the symbol “—” we mean a continuous embedding between (quasi-)normed linear
spaces. Let R™ denote the Fuclidean space of dimension n which will be assumed
>2 throughout the paper. Let @ be a cube in R™. The space BMO(Q) is the class
of real-valued integrable functions on @ such that

1
=g 5o | V@) —forlda<os

where for=A,(Q") 1 fQ, f, and the supremum is extended over all subcubes @’ of
Q. Let us recall that BMO is not a Banach space, although it can be turned into
one by introducing the norm

£ lemo(@) = 1/ -+ fllL. @)
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We say that a function f: @—R belongs to VMO(Q), the space of functions with
vanishing mean oscillation, if lim, .o, 07(s)=0, where

1
(21) )= s 3o [ V@) alde
Occasionally we shall work with the function g? , defined in the same way as gy but
with cubes replaced by balls.

The following relations hold: L, ¢ BMO, VMOGBMO, L., ¢ VMO, and
VMO Lo, (the non-equalities and non-inclusions can be demonstrated for example
with the functions log ||, log |z|, sin(log |z|), and (log |z|)1/2, respectively).

Let G be a measurable subset of R™ and let f be a real-valued measurable
function on R. The nonincreasing rearrangement of f is given by

F@)=sup{s>0| \({z e G||f(x)| >s}) >}, 0<t<A,(GQ),
and the signed nonincreasing rearrangement of f is given by
FF&)=sup{seR |\ {z G| f(z)>s}) >t}, 0<t<A(G).

We also denote by G* the ball, centered at the origin, and having the same measure
as G, and by f* the spherically symmetric rearrangement of f, namely, the radially
decreasing function on G* equidistributed with f. Observe that f*(z)=f*(Cy|z|"),
where C,,=7n"/2/ F(1—|—%n), the measure of the n-dimensional unit ball.

Let X be a Banach space of functions defined on R”, equipped with the norm
I - |I- We say that X is a rearrangement-invariant Banach function space, or briefly
an r.i. space, if the following five axioms hold:

(P1) 0<g< ae. implies llgllx <|1fl1x;

(P2) 0<f, 7 f ae. implies || fu]x /[ flx;

(P3) llxEllx <co for any ECR™ such that \,(E)<oo (here xg denotes the
characteristic function of E);

(P4) for every ECR™ with A,(F)<oo, there exists a constant Cg such that
I F<CE| fllx for all feX;

(P5) [|fllx=llgllx whenever f*=g*.
A function fe X is said to have an absolutely continuous (a.c.) normif || fxg,|lx—0
whenever x g, —0 a.e. If every function in X has an a.c. norm, then we say that X
has an a.c. norm. We denote by X, the subspace of X containing functions with
a.c. norms in X.

If X is an r.i. space, then the set

X':{f:R"HR‘/ |fg| < oo for allgeX}7
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endowed with the norm

1l —sup 41991,
SUP Talx

is called the associate space of X. Recall that X’ is again an r.i. space and (X') =X.
The Hélder inequality

(2.2) [1591<1f1xlglx
holds and, moreover,

_ .S/l
(2.3) 11 x =Sup e

For every r.i. space X there exists an r.i. space X on (0, 00), satisfying || || x=//*|x
for every f&X. Such a space is called a representation space of X. The norm in
X is given by || fllx=sup{fy" f*9*llgllx-<1}. Since A,(R"™)=oco and A, is non-
atomic, X is in fact unique. For proofs of properties of r.1. spaces and further results
we refer the reader to [BS, Chapter 2.

The simplest example of an r.i. space is the Lebesgue space Ly, 1<p<oo. The
generalized Lorentz—Zygmund (GLZ) space Ly g.q.3, equipped with the norm

1711 L g = NP OUP () (O] 10,0005

is an r.i. space, when 1<p, ¢<co, a, B€R, I(t)=1+]|logt|, lI(t)=1+log(I(t)), and
one of the following conditions holds:

l<p<oo;
p=1, g=1, a>0;

(2.4) p=1, ¢=1, a=0, §2>0;
p=o00, g=00, a<0;

p=o0, g=00, a=0, §<0;

(cf. [EOP)). If a=F=0, then L, 4., g coincides with the usual Lorentz space L, 4,
and, in particular, with the Lebesgue space L, if p=q. Let us further recall that
(Lp,gic,8) =Lyt ,q/;—a,—p, where 1/p+1/p'=1.

Another example of an r.i. space is the Orlicz space L 4, generated by a Young
function A, i.e., a convex increasing function on (0, co) satisfying lim, o, A(t)/t=
limg_, oo t/A(t)=0. Recall that L 4 contains all measurable functions f: R®—R such
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that [o., A(|f(z)|/K)dz<oo for some K>0. The Luzemburg norm in L4 is given
by

(2.5) ||f||LA—1nf{K>0‘/ <'f ”“’”)dmg}.

Moreover, (L4)'=L ; (with equivalent norms), where A is the complementary func-
tion of A, defined as A(t)=sup{st—A(s)|s>0}.
Let GCR™. We define the extension operator acting on real-valued functions

on G by
f(z), zed,

ch(x){ 0, zeRMG.

For a measurable subset G of R™ and an r.i. space X we set
X(G)={f real-valued on G|Egf € X}, |Iflx =Ecf|x-
If in addition G is open, we define the following spaces and norms of Sobolev type:
'X(G) = {u: G — R |u is weakly differentiable on G, |Du|€ X(G)};
WIX(G)=X(G)NV'X(Q), ulwix@ = llulx@+IDullx@);
Vo X(G) = {u: G — R | Egu is weakly differentiable on R", {Du|e X(G)};
Wo X(G)=X(G)NVy X(G), lullwyx ) = lulx@) +IIDulx(s),

where D stands for the gradient and | - | for the n-dimensional Euclidean norm.

3. Main results

Our main result is the following characterization of the embedding of V!X
into BMO.

3.1. Theorem. Let X be an r.i. space, and let QCR"™ be a cube. Lel me
(0,00) and let

By, = sup —||7" "X.9(")lx-
0<s<m
(i) There is a constant C>0 such that
(3.1) lulls@ < ClDullx(@y, u€VIX(Q),
if and only if

(32) By <o0.
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Moreover, if (3.2) holds, then the best constant C in (3.1) satisfies C<K By, (0)/2;
where K depends only on n.

(i) The space Ly, oo(Q) is the largest r.i. space X(Q) that renders (3.1) true.
In other words, (3.1) holds if and only if X(Q)<> Ly, (Q).

Note that B; in (3.2) can be equivalently replaced by B,, with any positive m.

3.2. Remark. We can also show that (3.2) is equivalent to

[ullsmo(@) < Cllullwix(g), uweW'X(Q).

As for the embedding into VMO, we have the following result.

3.3. Theorem. Let X be an r.i. space and let QCR™ be a cube. Then
(1) VIX(Q)CVMO(Q) uniformly, i.e.,

(3.3) lim sup 0.(s)=0,
704 [ Dufx <1

if and only if
. 1 1/n
(3.4) Jim i/ 0 ()L =0

(i) VIX(Q)CVMO(Q) if and only if X(Q)C(Ln,00)a(Q)-

3.4. Remark. The proof of Theorem 3.1(i) (see Section 5 below) immediately
gives a sufficient condition for the inclusion of VX (Q) into VMO(Q). Assume
that B;<oo and X has an a.c. norm. Then V!X(Q)CVMO(Q), and, moreover,
0u(8) <K By o|| Dul| x(g) for 0<s<X,(Q) and ueV'X(Q), where K only depends
on n. However, the inclusion is not necessarily uniform in the sense of (3.3), as
shown by the example X=L".

Our next aim is to characterize the embeddings of VOIX and V1X into L.
and C°. For this type of embeddings we can consider more general domains than
cubes. Actually, any open set G is admissible for embeddings of Vi X (G), whereas
a suitable class of sets for embeddings of V' X (G) can be defined as follows in terms
of isoperimetric inequalities.

We call G the collection of all open sets GCR"™ of finite measure such that, for
some K >0,

(3.5) Khe(s) >min{s, \u(G)—s}™ | 0<s< (@),
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where hg(s) is the isoperimetric function of G, defined as

ha(s)= ,\"%IEIE:S P(E,G).

Here, the infimum is extended over all measurable subsets of G having finite perime-
ter P(E, G) relative to G. Recall that P(E, Q) is defined as the total variation on G
of the vector-valued measure Dy g; in particular, if 9ENG is smooth, then P(E,G)
agrees with the (n—1)-dimensional Hausdorff measure of JENG. The smallest
constant K such that (3.5) holds will be denoted by K{(G) and called the relative
isoperimetric constant of G. Note that G includes, e.g., connected open sets having
the cone property, in particular cubes and balls.

3.5. Theorem. Let X be an r.i. space, and let me(0,00). Set

A =7 X0 ,my (M) 1 -

(i) Let GCR™ be open and let A,(G)<oo. Then there is a constant C >0 such
that

(3.6) [ullrm(e@) S ClIDUlx (@), uwe Ve X(G),
if and only if
(37) .A1 < 0.

Moreover, if (3.7) holds, the best constant C in (3.6) satisfies CS(nCé/")’lAM(@.
(i) Let GeG. Then there is a constant C>0 such that

(3.8) ess sup u—essinf u < C||Dul x (g, ueVIX(Q),

if and only of (3.7) holds. Moreover, if (3.7) holds, then the best constant C in
(3.8) satisfies C<2Y™ K(G) A, (a))2-

(iii) Let GCR™ be open and let A\,(G)<oo. Then L, 1(G) is the largest r.i.
space X(G) that makes (3.6) true. In other words, (3.6) holds if and only if X(G)—
L1 (G). An analogous statement holds for the inequality (3.8).

As in (3.2), the choice of the index 1 in (3.7) is immaterial.

3.6. Remark. The same argument as in the proof of Theorem 3.5(i) (see Sec-
tion 5 below) shows that if G=R™ and if X is such that uv€ X implies A, ({|u|>t})<
oo for every >0, then (3.6) is equivalent to (3.7) with m=o00c. Thus, in particular,
if (3.7) holds with m=oo, then (3.6) is true for sets of infinite measure as well.

The fact that L, ; is the optimal r.i. domain for the Sobolev embedding (the
statement (iii) of Theorem 3.5) can be obtained also by a method from [EKP].
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3.7. Remark. In fact, we can also show that the following three statements are
equivalent:

(i) Ay <oo;

(ii) for every Ge€G we have

lu—ucllze(e) < ClDullx@), weV' X(G);
(iii) for every G which is a finite union of sets from G we have

Jullzo ) <Cllullwixg), uweW'X(G).

3.8. Remark. Obviously, (3.7) implies (3.2) for any r.i. space X. The converse is
not true. For instance, X =L,, satisfies (3.2) but not (3.7). For more examples and
more delicate results see Corollary 6.2(ii), Theorem 3.1(ii), and Theorem 3.5(iii).

Recall that a bounded open subset G of R™ is called strongly Lipschitz if for
every x€0G there exists a neighbourhood U of z such that GNU is the epigraph of
a Lipschitz continuous function.

3.9. Theorem. Let X be an r.i. space and let G be a bounded strongly Lip-
schitz domain. Then the following three statements are equivalent:

(1) Timgo, Ir 1/ x(0,00 () 00 =0;

(i1) im0, SUP |,y o) <1 SUPJ—y|<s [2(T) —u(y)[=0;

(iil) W*X(G@)—>C%G) compactly.
Moreover, if any of (i)—(iil) holds, then there exists a constant C such that for s>0

(3.9) P () — ()] < Cllullwx e Ir ™ X, ()l
z—y|<s

3.10. Remark. It is worth noting that the embedding W!X(G)—C%(G) holds
also if A; <oo and X has an a.c. norm. For example, this is the case when X=
Ln1(G).

4. Generalized Pélya—Szegd principle and Poincaré inequality

In this section we state and prove two lemmas which will play a key role in
the proof of our embedding theorems. The first of them provides a generalized
Pdélya—Szeg6 inequality.
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4.1. Lemma. Let X be an r.i. space and let GCR"™ be open.
(1) Let ueVy X (G) be such that A, ({|u|>t})<oo for t>0. Then u* is locally
absolutely continuous and

du* n!
(4.1) nCy/™||———s*/ = || Du*|| x(ex) < | Dullx(c)-

ds X (0,0 (G))

(ii) Assume that G is connected and \,(G)<oo. Let ueV*X(G). Then u’ is
locally absolutely continuous and

hote) (-5 ) Hx(wc)) <[ Dulix(c.

Proof. (i) The identity in (4.1) is a consequence of the very definition of u*.
As for the inequality in (4.1), let us set

(4.2)

o
¢(3):n0}/"(—%—>81/", 0<s<A(G).
If we show that
(4.3) / 6 (r) dTg/ \Dul*(r) dr,  0<s<A(G),
[} 0

then the inequality in (4.1) will follow on applying [BS, Chapter 2, Theorem 4.6].
In order to prove (4.3), we make use of an argument from [T2], {T3]. Let 0<a<b
and let v be the function defined by

0 if Ju(z)| <u*(b),
v(z)=1¢ u(z)—u*(d) if u*(b) < |u(z)] <u*(a),
u(a)—u(b) if u*(a) <|u(z)|

Since |Dule X(G), and X(G)C L1 (G)+ Ly (G) (cf. [BS, Chapter 2, Theorem 6.6]),

we have

/ |Du|*(r)dr <oo  for s>0,
0
and therefore DueL,(G’) for every G’ CG having finite measure. Hence, as

(4.4) M{zeGlu"(a) > |u(z)] >u*(d)}) <b—a,



326 Andrea Cianchi and Lubog Pick

we have that veW!'L'(R"). The coarea formula (in its form for functions of
bounded variation) applied to v yields
u*(a)

(4.5) / | Dul d:c:/ P({Ju| >}, R™) dt.
{z€Glu*(a)>|u(z)1>ux(b)} u*(b)

The standard isoperimetric theorem tells us that
(4.6) P({[ul >}, R™) > nCY"\/™ ({ju] > t}).

Now, the last two inequalities easily imply that

(4.7) |Du| dz > nCL/ o™ [u* (a) —u*(b)).

/{xeGu*(a)>u(w)l>u*(b)}

The estimates (4.4) and (4.7) ensure that u* is locally absolutely continuous. More-
over, the inequalities (4.5) and (4.6) yield, via a change of variables,

b
/ o(r) drS/ |Du| dzx.
a H{zeGlux(a)>|u(z)[>u*(b)}

Thus, by (4.4) and by the Hardy-Littlewood inequality for rearrangements, we
obtain for every countable family {(a;,b;)}$2; of disjoint intervals in (0, A, (G)),

E(bifai)
/ o(r)ydr < / [Du|*(r)dr.
U(as,b:) 0

The last estimate yields

(4.8) sup /Eqﬁ(r) dr < /DS | Du|*(r) dr,

M (E)=s

since every measurable set EC(0, A, (G)) can be approximated from outside by sets
of the form (J(a;,b;). Hence (4.3) follows, as its left-hand side coincides with that
of (4.8).

(ii) The absolute continuity of u° is proved in [CEG, Lemma 6.6]. The proof
of (4.2) is analogous to that of (4.1). In particular, for the analogue of (4.4), we
use [CEG, (6.22)]. O

The next result extends the Poincaré inequality to the context of r.i. spaces.
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4.2. Lemma. let X be an r.i. space and let GCR™ be open. Let A, (G)<oo.
Then

(G 1/n
(1.9 lulixier < (¥4 ) I1Dulx@ weVX(E)

Proof. We define the linear operator

v (c)pp
Tg(s):/ 9(r) dr

Y
for functions g: [0, A,(G))—R. It is not hard to verify that
191210, 5n(60) <A@ gl za0 Mm@
and

179l 1. 0, 0n(@)) < PARG)Y™[gll 1o (0,00 (@)

An interpolation theorem of Calderén ([C], cf. also [BS, Chapter 3, Theo-
rem 2.12]) now yields

(4.10) 1Tl 507,01 <PA(G) gl 50 5n(cyys 9E X0, An(G)).

Now, if ue Vg X(G), then

An(G) du*
*(8)= — dr.
u*(s) /S = r

We thus get (4.9) from (4.10) and Lemma 4.1(1). O

5. Proofs of the main results

Proof of Theorem 3.1. (i) Assume that (3.2) holds and let ue V!X (Q). Then
(cf. the proof of Lemma 4.1) |Du|€ L1 (Q). Since @ is a Lipschitz domain, Sobolev’s
embedding theorem ensures that u€ L,/ (Q), and, the more so, u€L1(Q). Let Q'
be a subcube of Q. Denote the restriction of u to @' by v and set a=X,(Q’). Then
we have by [CEG, (6.30)]

. e r dv®
v°(8)—vgr :./0 (X(S,a)(r) ) (— o ) dr, 0<s<a.

a
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By Fubini’s theorem, this yields

a a d'Uo a r
(8)—vor| ds < — _
/0 [v°(s)—vor| 37/0 o </0 X(s,0)(T) a‘ds) dr
ll/Q _ o a _ °
:2/ r(a=r) (-di> ari2 [ mlazr) (fl” )dr.
0 a dr aj2 @ dr
Using (2.2), we easily obtain
n' dv°
rt/ (W)X(O,a/Z)(T)
f  dv’
i/ 2
(a‘ T) ( dr )X((L/Z,CL) (T)

/ [ () —ver | ds <2
0

7”7‘1/")((0,@/2) ()l x
X

+2

M@= "X a2, (M-
X

Now, on taking into account the identity

((@=1) "X (a/2,0)(1))* = (r* "X (0,a/2) (7))

the inequality (3.5), and the fact that K(Q')=K(Q), we get from Lemma 4.1(ii),

(5.1) /0 ’

Since (v—wvg)*=(v"—vg)*, we have

(5.2) /Q’ |u($)—uQ/|dx:/0a

By (5.1) and (5.2),

v*(5)—ver| ds AK(Q)IIr'/"X(0,0/2) (") x/ 1 Dull x @)-

v°(s) —vgr| ds.

[ull«.@ < 2K(Q)| Dull x(q)Bas2,

and (3.1) follows with K=2K(Q).
Conversely, let (3.1) hold. We claim that, for some C; >0,

1 8
(5.3) sup —/ (u*(r)—u*(s)) dr <Cillullwrx(g), uwEW' X(Q).
0<s<xn(Q) $ Jo

Indeed, an argument analogous to that of [BS, Chapter 5, Theorem 7.10] shows
that there is a constant Cy>0 such that

1 S
sy e O e e o) ar<olle i)
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Using (3.1) and the estimate ||ull, gy <C|lullx(g), which follows from (P4) (or
(2.2)), we obtain (5.3) from (5.4). Now, Lemma 4.2 and (5.3) yield

sup l/S(U*(T)'U*(S))017“SCB)HDUHX@M ueVy X(Q),
)y s Jo

0<s<An(Q S

with C3=C1(1+(An(Q)/Cn)¥/™). Since [ (u*(r)—u*(s)) dr=[; —r(du*/dr)dr, we

have L g
~/ —r; dr
sup sup Slo 9T Cs

weVEX(Q) 0<s<An(@)  I1Pullx(q)

For s small enough there is a ball BCQ such that A\, (B)=s. Considering radially
decreasing (r.d.) functions u€Vy X(B)C Vg X (Q), we obtain from the last inequal-
ity and Lemma 4.1(i) that

l/srdu* dr
(5.5) Ci> so _dr

sup - .
(-]
dr X(0,s)

u€EVy X (B)
u r.d.
By (2.3), the right-hand side of (5.5) equals s~||r'/™x (0,5 (r)| %/, and (3.2) follows
for small (hence for all) m>0.
(ii) Let Ap(Q)=m. Assume that X{(Q)— L 00(Q). Then L, 1(Q)—X"(Q),
and therefore

B —HTI/ X(OS)(T)UXI<C sup -HTU X0, ()|l 1

=C sup l/ (s—_l?ﬂ)idr<oo,
o<s<m 8 Jo  TY/"
and (3.1) follows from (i).
Conversely, assume that X(Q)% Ly 0 (Q). Since both X and L, o are r.i.
spaces, this implies X (Q)¢ Ly, (Q) ([BS, Chapter 1, Theorem 1.8]). That is, there
exists a function g from X(Q) such that ||g||x(gy=1, and g¢ Ly, o(@). Thus there

/"*

exists a sequence tx < (0, m) such that t,/ " g*(ty)—00 as k—oo. But then,

1 17
sup —IIT "X (0,9 % > sup — sup Fr ) (te—r)t" dr

0<s<m § keN Lk |fx<1Jo
1 e * 1/n
> sup — g (r)(tg—r)'"dr
keN fk

* L
zsupw/ (tp—1)Y"™ dr =00
0

keN bk
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hence (3.2) is not satisfied, and, by (i), V! X(Q)#BMO(Q). O

Proof of Theorem 3.3. (i) That (3.4) implies (3.3) follows easily from a close
inspection of the proof of Theorem 3.1(i).

Conversely, assume that (3.3) is true. Let zo€Q and denote by B the ball
centered at xzo and having measure ¢. Let ¢ be small enough so that B, C(@ and
consider radially decreasing functions u with respect to g, supported in By /. Then,
similarly as in the proof of Theorem 3.1(i),

[ (eat-3) (-4

L |u(z)—1u |dx—l/t ds
Mn(B1) /i, Tk ’

whence

ﬁ 5 |u(x)—up,|dz > % /t/: /Ot (X(s,t)(T)—%) (-d;*> dr

t t/2 —%
:1/ (/ i<rdu)dr>ds
t t/2 0 t d’l"

ds

Now, by Lemma 4.1(i), we have

du*
1D x = nCL/™ |- S=s~m ||

X

Combining the last two estimates and setting g(r)=nCy/"r/™ (—da* /dr), we ob-
tain

1 t/2 .
sip oB(H)> sup —— / Py (r) dr = X0/ Py 150,
0

1
| Dullx <1 lgll <1 2nCp/ "t 2nCy/"t
and the assertion follows, since, as is readily verified, oZ(t)<C;0(Cat), where Cy
and Cs are positive numbers depending only on n.
(ii) Let X C(Ly 00)a- Then, following the lines of the proof of Theorem 3.1(i),
we obtain for every u€V*X(Q) and every @' CQ such that \,(Q)=a
AK(Q)
a

1/n

7" X (0,a/2) (T)|lnr 1 [l Dux g ln,c0

1
T u(z)—uo | dr <
/\n(Ql) /Q’| ( ) @ ; -
= Ol DuxqIn.co;
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which tends to zero as a—0,, since Du€ X(Q)C(Ln,00)a(Q). Hence VIX(Q)C
VMO(Q).

Conversely, assume that X ¢ (Ln,0)e. Then there exists a function ge X (Q),
a sequence tp—0,, k€N, and a positive number § such that

(5.6) g (t)t/">6, keN.

Let u be a radially decreasing function with respect to the centre of ). Moreover,
assume that the support of u has measure a and is contained in @, and that

u*(t):/t ‘Z—l%dr, te(0,a).

Then, by Lemma 4.1(i), ue V! X(Q), since g€ X(Q). We claim that u¢ VMO(Q).
For k€N let By, be balls concentric with @ and such that A, (Bj)=2t;. Similar-
ly as in the proof of Theorem 3.1(i) we can show that, denoting by vy the restriction
1 1

of u to By,
2t r dv;,
- _ — B Y Rk
st . tw@=ud o= g [ [ (v 0= 5) (-5 ) o

for large k. Now, —duvy/dr=—(du*/dr)x(2¢,)(r), because u is nonnegative and
radially decreasing and By, are concentric with (). Therefore we in fact have

ds

1 1 [
M (B) I, lu(x)— “Bk(dl‘—— |F'(s)] ds,

2ty
where the function F(s)= 2tk —(du*/dr)(r)(X(s,20) (1) — (r/2tg)) dr. Observe that
dF /ds=du*/ds, which is negamve and increasing on (0, 2¢;). Hence F is strictly de-
creasing and convex on (0, 2t ), and there is a unique sg € (0, 2£% ) such that F'(sg)=
Assume that so<ty. Then, since —F'(s) is positive and concave on (i, 2ty ), we
get from (5.6)

(5.7)

1 2ty 1 2ty 1 1 2ty du*
il _ > (-
5o | IP@Ias> g [ -P@ sz e =g [ -G
1 tk *
>— | g ryt/rdr>cd K () f/m > s
8tr Jo 23

Now assume that sg>ty. By the positivity and convexity of F on (0,t) we
have F(s)>F'(tx)(s—ty) for every s€(0,tx). Thus, using F’(tx)=(du*/dt)(ts) and
(5.6), we get

1 2ty

2tp,

|F(s)|ds > F;(tk) /0 “(s—ty) ds = ig*(tk)tilc/” > g
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The last two estimates combined with (5.7) show that u¢VMO(Q), since
lims_.q, 0Z(s)=0 whenever lim, o, 0,(s)=0. The proof is complete. [

Proof of Theorem 3.5. (i) Assume that (3.7) holds. Let GCR™ be open,
An(G)=m, and let u€V@ X(G). Then

™ du*
5.8 =u*(0) = — dr.
(59) iy =0 = [ = dr

By (2.2),

™ du* 1 ,
5.9 — dr < ——||p—1/n m _
( )/0 o TS ol Xem (s

n ’ du*
"Crl/ rl/m <_W) X(0,m) (r)

Now, using (5.8), (5.9), and Lemma 4.1(i), we get (3.6) with C=A,,(nCp/™)~1.

Conversely, assume that (3.6) holds for some GCR™. Let B be a ball contained
in G. We shall consider radially decreasing functions u€Vy X(B)CVX(G). By
(3.6) and Lemma 4.1(i),

An(B) du*
ol ) L
C> su T = sup 0 d

1 D - ,
uEVy X(B) | “”X(B’) wEVE X(B) nC}l/nTl/n (_ . >X(0,m)(r)

w r.d. u r.d.

By (2.3), the last supremum equals Ay (p), and (3.7) follows for m=A\,(B), and
therefore also for m=A,(G).

(i) Let (3.7) hold, let G€G have measure m, and let ueV*X(G). By (2.2),
(3.5), and Lemma 4.1(ii), we have

_du°
dr
< K(G)| min{r,m=7}""||5(0,m)
1 . l/n/< du°)
X f{ —— min{r,m—r} —
”K(G) { ar /|| %(0,m)

< K(G)|| min{r,m—r} """ || x:(0.m) 1 Dull x (-

dr

m
€ss sup u—ess infu:/
0

Now, (3.8) follows with the desired C, as || min{r,mvr}’l/”'H)—(,(O’m):Zl/”/Am/Q.

Conversely, the necessity of (3.7) can be obtained as in (i} on noting that for
a nonnegative radially decreasing function u vanishing outside the ball B we have
u'=u*, u*(0)=ess sup ¢, and v*(m)=ess inf u=0.
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(iii) Note that (3.7) holds if and only if SUD|| £ () <1 I () Y™ dr <oo, in
other words, X(G)— L, 1(G). [0

Proof of Theorem 3.9. (i) = (ii) Since G is a bounded strongly Lipschitz do-
main, (cf. e.g. [A, Lemma 5.17]), we may assume without loss of generality that G
is a cube. On applying (3.8) to the restriction of u over subcubes of G containing
x, y and having sides of length s, we obtain (3.9), and the assertion follows.

(i) = (i) Let zo€G and for t small let By be a ball centered at zp and such
that A, (B;)=t. Consider radially decreasing functions u with respect to zy and
supported in B;. Let t be small enough so that B;CG, and set 7=(t/ C’n)l/ " Then

_ _ _ b dur
(5.10) sup |u(x)—a(y)|=u(ze)= | — 7 dr.
|lz—yl<T 0 T
Set g(r)anﬁ/n(~dﬂ*/dr)rl/”,. Then (5.10) yields
o 1 G
sup  sup |u(z)—a(y)|= —77 sup / T1</n)’ dr
5.11) gl x<1lz—yl<r nCn" llglx<1J0
(5. !
= P X (M)ix-
nC’}/n H ©0 X

On the other hand, we have by Lemma 4.2 and the definition of the norm in WX,

(5.12) laliwx @) < Kllgllx,

where K=1+(A,(G)/Cy)Y/™. We thus obtain from (5.11) and (5.12)

Ir =" X . (M)l x <nCY™  sup sup |u(z)—a(y)l,
“ﬁnwlx(a) <K |z—y|<T

and the desired implication follows.

(i) = (iii) By (i) and Theorem 3.5, the set {||lullw1x(c) <1} is equibounded,
and by (ii) it is equicontinuous at every zo€G. We already know that (i) implies
(i), hence the desired implication follows via the Arzela—Ascoli theorem.

(i) = (1) If (iii) holds, then, by the Arzelda—Ascoli theorem, the set
{luflw1 x () <1} is equicontinuous at every xp€G. Now, (i) follows as in the proof
of (i) = (i). Note that a full proof of the implications (i) = (ii) and (i) = (iii)
would require an approximation of u by a sequence of continuous functions (e.g.
averages of u over subcubes whose measure goes to 0), converging a.e. to u. For the
sake of brevity we omit the details. O
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6. Examples

We conclude the paper with some applications of the results from Section 3.
For the sake of simplicity, we consider spaces of functions defined on a cube QCR"™.
We start with GLZ spaces.

6.1. Theorem. Let 1<p,q<oo, o, B€R, and assume that one of the condi-
tions in (2.4) holds. Let X(Q)=Lp ¢:0,8(Q).

(i) The embedding V* X (Q)—BMO(Q) holds if and only if one of the following
conditions is satisfied (recall that n>2):

pP>1
(6.1) p=n, a>0;
p=n, a=0, 3>0.

(ii) The embedding V' X(Q)— Loo(Q) holds if and only if one of the following
conditions holds:

p>n;
1
(6.2) 4
1 1
p=n, O{ZT, 6>f,7
q q

p=n, ¢g=1, a=0, §=0.
(iii) The inclusion VX (Q)CVMO(Q) holds if and only if one of the following

conditions holds:
p>ng
(6.3) p=n, a>0;

p=n, a=0, >0

p=n, 1<g<oo, a=0, §=0.
The same inclusion holds uniformly in the sense of (3.3) if and only if one of the
first three conditions in (6.3) holds.

6.2. Corollary. (i) The only GLZ space of the form X=Lyp g, such that
VIX(Q)—BMO(Q), but VIX(Q)Z VMO(Q), is the Lorentz space Ly co.

(ii) A GLZ space X=Lyp g g satisfies V1X(Q)—BMO(Q), but V' X(Q)%
Loo(Q), if and only if one of the following conditions holds:

1
p=n, 1<qg<o0, O<a<—;

1 1
p=n, 1<g<oo, a=—, <

q q
p=n, l<g<oo, =0, §>0.
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Proof of Theorem 6.1. The statements (i) and (ii) can be proved by elementary
calculus, cf. also [EOP, Theorem 6.3].

(iii) By a direct calculation we can verify that if either p>n, or p=n and a>0,
or p=n, a=0, and 8>0, then (3.3) holds. On the other hand, if p=n, 1<g<o0,
and a=0=0, then B) (g)<oo and X has an a.c. norm. Hence the assertion follows
either by Theorem 3.3 or by Remark 3.4.

Conversely, if VI X(Q)cVMO(Q), then also VX (Q)CBMO(Q), and, by (i),
one of the conditions in (6.1) must be satisfied. However, the only possible choice
of the parameters p, q, o, 8 such that (6.1) is true but (6.3) is false, is p=n, g=o00,
and a=(=0. But in this case VX (Q)Z VMO(Q), since, e.g., xq(z)log|z—zg|€
V3IX(Q)\VMO(Q), where z¢ is the centre of Q. The inclusion is indeed not uniform
if p=n, 1<g<oo, and a=8=0; to see this, observe that (3.4) is not satisfied, and
use Theorem 3.3(i). O

Our next example concerns Orlicz spaces. Part (ii) of the following theorem
was proved in [Ci], cf. also [T1].

6.3. Theorem. Let A be a Young function.
(i) The embedding V1L 4(Q)—BMO(Q) holds if and only if

¢
(6.4) / A(s)ds <Ct" T for some C and all t>1.
0

(i) The embedding V1L 4(Q)— Loo(Q) holds if and only if

(6.5) /00 Als) ds < co.

8n’+1

Proof. (i) Using (2.5) and elementary calculus, we can easily show that

n Sl/n

|7 X(O,S)(T)”Lg = m,

where .
E()= tﬁn / [l(y)y’“1 dy, t>0.
0

Note that F is increasing, since E(t)=n fol A(ty)y"~' dy. Thus, when X=I4, (3.2)
can be rewritten as

t_ n—1 ,
(6.6) / A(s) (f) ds<ct™*1, t>1.
0 t
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Furthermore,

t syn—1 t g\—1 1 o 1 v
A - ds> A - > A(syds> — | A(s)d
/0 (5)<t) s_/t/2 (s)(t) ds> o1 /t/Z (s)ds> o, (s)ds,

whence (6.6) is equivalent to (6.4). This proves (i).
The proof of (ii) is a consequence of the fact that, in case X=Ly4, (3.7) and
(6.5) are equivalent, as a straightforward calculation shows. [

Theorem 6.3 enables us to prove two optimality results in the context of Orlicz
spaces.

6.4. Theorem. (i) The space L,(Q) is the largest Orlicz space La(Q) such
that V1L A(Q)—BMO(Q) (and also such that V' L4(Q)CVMO(Q)).

(ii) There does not exist any largest Orlicz space La(Q) such that V1LA(Q)—
Loo(Q)-

Proof. (i) Obviously (6.4) is satisfied when A(t)=t".

Let now A be a Young function such that L,(Q)ZLa(Q). That is (cf. [KR]),
A(t)>Ct™ for some C and all t>1, and there exist sequences t;, /00, A,/ 00 such
that

(6.7) A(ty) =Mt}

Now, since A is a Young function, we have

(6.8) As)> Af’“)s, o> 1y
k

For k€N define

(69) 2 = )\gtk,

where « is any fixed number in (0,n—1). Then, by (6.8), (6.7), and (6.9),

o 2k A
A(s)ds > Altr) / sds= (t)
tr th tr

z,

Z/%—t% 2a414n +1
= >ONTy

Zk -

/ A(s)ds>

0 iy
for some C'>0. On the other hand, by {6.9), ZZ,‘H:)\Z("IH)tZ,H, and therefore
(6.4) does not hold, since a<n—1 is equivalent to a(n'+1)<2a+1.

Let us recall that an alternative proof follows from Theorem 3.1(ii) combined

with the well-known fact that there is no Orlicz space L4(Q) such that L,(Q)&
LA(Q)C L oolQ).
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(ii) The proof of this part is patterned on a construction from [KP]. We may
assume, with no loss of generality, that A\,(Q)=1. Let A be a Young function such
that (6.5) holds. We claim that then there is another Young function, B, such that
B(t)>A(t) for all t>0, limsup,_,., B(t)/A(3t)=cc for every #>1, and

B(S)

(610) g™ e/ +1

ds < 0.

For such B we would have L4(Q)%G Lp(Q) and V' Lg(Q) Loo(Q), as required.
To prove our claim, let us set ay=(klog®k) !, keN. For t€[l,00) we define
T by the identity

A(r)

T

(6.11) —apt™ 1, telkl (k+1)).

We note that 7 is uniquely defined, since the function A(t)/t strictly increases from
0 to oo as t goes from 0 to co. We claim that for every §>1

. fi('r) £
(6.12) e T

Indeed, assume the contrary. Then, for some 8>1 and K >0,

K 'apt™ <A(Bt), telk, (k+1))).

But then
o] k+1)' A B (k+1)! A(ﬁy)
/1 o ds—Z/ﬁk' 5n+1 ) ds=pn Zl/k ek
1
> ; ay log{k+1
Kﬁ" kzl K log(k+1) =

which contradicts (6.5). This proves (6.12).

Now, let 8; /o0 be a fixed sequence. Then, by (6.12), there exists a sequence
tj /oo such that t;>4!, ;11 >7; (where 7; corresponds to ¢; in the sense of (6.11)),
and

Alm) 4 _

(6.13) lim -
j—oo Ty A(ﬁjtj)



338 Andrea Cianchi and Lubo§ Pick

We define -
(t=tj), te(ty, ),

A(t), otherwise.

Then B is a Young function and, evidently, B(t)>A(t) for t€(0,00). It follows
easily from (6.13) that, for every jEN, 7,>2t;, and therefore also A(7;)>2A(t;).
Hence, using (6.13), we get

~ A(T~)~/~l(t )
Bey AT
A(Bjt;) A(Bjt;) B

It remains to show (6.10). We have
* B(s) > A(s) o~ A(rj) —Alty) [T s—t;
ds < ds.

Further, using (6.11), ¢;>3!, and the monotonicity of {a;}, we obtain

1 A(r))t;
2 iji(ﬂjtj) / >

Therefore, we get (6.10) on recalling (6.5). The proof is complete. [
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