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1. Introduction 

The main purpose of this paper is to give an elementary proof (without use 
of any desingularization result) of a monodromy theorem for integrals of certain 
multi-valued analytic functions with their singularities on an algebraic manifold, 
without restrictions on this manifold. In the main theorem (Theorem 1) we shall 
consider an integral 

(0) g(y) = f ~ f(x, y) dx, 

where E, is the unit Euclidean simplex in R", y a parameter in C l, and where f 
is regular analytic in a neighbourhood of En•176 yO being some point in C~; 
hence g is defined and regular analytic in a neighbourhood of y0. Further it will 
be supposed that f belongs to a certain class of analytic functions on (part of) 
C "+t, i.e. that f can be continued analytically to a function of the class. Besides 
being regular analytic (and in general multi-valued) outside some genuine algebraic 
manifold in C "+l, the functions of such a class (denoted Pm(C"+Z), in being an 
integer _~1) are characterized by certain monodromy formulas. To wit, they will 
be required to satisfy the relation (T~-id)mf--0  for all loops 7 belonging to 
a certain class and for all germs of f at a point of 7; here Tr denotes analytic con- 
tinuation along 7, and k is a positive integer that may depend on ~ and on the parti- 
cular germ of f Theorem I states that if f6Pm(C~+l), then the function g of (0) 
belongs to Pm+,(Cl). In particular, if y is a single complex variable, it will follow 
that g can be continued analytically along any path in C outside some finite set M 
of points and that (Tk-id)m+"g=O for any circle ~ having only one of the points 
of M, or all, in its interior; as before k is a positive integer that may depend on the 
germ of g (and on 7, though this is not necessary here). If f is algebraic, it will, 
in particular, follow that gEPI+~. 

It can be shown that the index m+n of Theorem 1 is the best possible. 
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The proof of Theorem 1 is by induction over n, whereby one is reduced to 
prove the theorem in the case n ~  1. In this case one performs the continuation 
of  g by continuation of f and deformation of the path of integration, so as to avoid 
the singularities of f In establishing the monodromy formulas, we shall, by the 
choice of our class of loops, essentially have to treat only the case where y is a single 
variable and V a circle around only one singularity of g (chosen to be at ~). In this 
case there is a surveyable description of the deformation and of the integrands 
on the various parts of the path of integration, corresponding to an expression 
(T~-id)m+lg.  It will be proved that for some positive k all the mentioned integrands 
vanish, which will imply Theorem 1. An essential point is, of course, that our class 
of loops is optimal in the sense that it contains enough loops to ensure that 
(T~-id)m+Ig=O (read as above) for any loop T in the class. 

In Theorem 2 we use Theorem 1 to prove a similar theorem, but now for the 
integral of a differential k-form over a k-cycle on an algebraic manifold, where 
both the form and the manifold depend on a parameter, in the latter case algebra- 
ically. The coefficients of  the differential form are supposed to be of class P,, (the 
parameter being included among the variables). Theorem 2 states that then the 
integral is of class P,,+k as a function of the parameter. The reduction to Theorem 1 
is made by an algebraic triangulation of the cycle. 

Further we shall use Theorem 2, in combination with a result of Nilsson [3], 
to show Theorem 3, which gives art expansion, for the parameter ;~ large and posit- 
ive, of a function e (2 )= f f ( x )~g (x  ) dx, where f and g are real analytic functions 
on (part of) It" and f real-valued. Further f will be required to be algebraic and 
g to belong to Pm(C~), for some m, and in addition to satisfy a certain growth con- 
dition (on C"). The expansion of e(2) will be of the form Y.~j.k Cjk 2jls (log ~t) k, where 
s is some positive integer and the constants c j, vanish, when j is large and  positive, 
and when k does not satisfy O<-k~rn+n ~ 1. Since the expansion has a dominating 
term, it follows that e(2) behaves asymptotically as some CjkkJ/s (log ),) k when 
2 ~ + ~ , .  

Theorem 1 is based on an old unpublished result of the author, implying a proof 
of Theorem 1, except that it was only shown that gCP~,, instead of gEP,,+,. Here 
I want to acknowledge that I owe the corresponding improvement of the proof 
mainly to Le Dung Trfing, Jan-Erik Bj6rk, and Dimitris Scarpal6zos, in particular 
the use of a (in general) large number of "intermediate" cycles fl,(fl,)b (see the proof) 
and the algebraic lemma. In [5] Scarpal6zos has also given a variant of the proof. 
Further, in a private communication of 1971 Pierre Deligne sketched a quite different 
proof, using resolution of singularities, and giving the correct improvement of 
the old result. Partly our proof of Theorem 1 generalizes classical methods of Fuchs, 
Picard, and Lefschetz. Among papers giving general monodromy results let us 
refer to Grothendieck [1], Landman [2], and Trfing [6] (the latter not using resolu- 
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tion of singularities). We also remark that the present Theorem 3 is an improvement 
of  Theorem 1 of the author's paper [4]. 

Finally I wish to thank Trfing and BjSrk for interesting discussions on the 
subject. 

2. The induction class and the main result 

We are going to work in complex n-space cn, with points z=(zl .... , z,) etc. 
Let us start by a few definitions. 

Definition. By K(C") we denote the class of all complex-valued (and in general 
multi-valued) functions f which are defined and regular analytic in a region of 
the form C " \ V ,  where V= V(f)  is an algebraic manifold in cn but not C" itself. 
(It thus suffices to consider manifolds V of the form p (z) = 0, where p is a complex 
polynomial ~ 0 in n variables.) 

Next we define the set of "permissible" paths of continuation in our study of 
the ramification. 

Definition. If V is a subset of C", we shall denote by B(V) the class of all closed 
paths 7 in C " \ V  that satisfy the following condition. There is a branch a of an 
algebraic function C-~C", such that 0~ is regular analytic (and singlevalued) in 
a pointed neighbourhood of  co and that, for all sufficiently large positive real numbers 
r the closed path 7,(a): [0, 1]3t~-~a(re 2~t) is contained in C" , .V and homotopic 
to ~, in this set (under homotopy for loops). (Thus the 7,: s are the images under 
of the circles [z[--r, and. B(V) is, bu t  for homotopy, made up of such images 
corresponding to different a: s.) Note that a must take on only values in C " \ V  
in some pointed neighbourhood of co. 

When 7 is a loop in C", let Tr denote analytic continuation along 7. Hence 
Tr is a mapping whose domain and range both consist of analytic germs at the 
point 7(0) (=7(1)) (we assume throughout that the parameter interval is [0, 1]). 
Clearly T~ is linear over C. 

We are now ready to define our induction class. 

Definition. I f  m is a positive integer, then Pro(C") will denote the class of all 
functions f in K(C") such that, with some choice of the corresponding manifold 
V(f),  we have for any path yEB(V(f)) and any determination f0 of f at ~(0) 
that (T~--I)mf0=0 for some positive integer k=k(%f0)  (where I denotes the 
identity operator). 

It is clear that Pm (C") ~ P,,, (C") if m<=m" and that f+g  belongs to Pro(C") 
if f and g do. A simple induction argument shows that if fCPm(C") and g~Pm,(C"), 
then fgC Pm+m,_l(Cn). 
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And if fCPm(C'), and ~p is an algebraic mapping C ' ~ C "  (in general many- 
valued) such that the range of (p is not contained in V(f) ,  then the composition 
f o 9  is in Pro(C'). Let us also observe that every algebraic function C"-~C is 
in PI(C"), while f ( z ) = l o g  m Zl is an example of a function in Pm+I(C") but not 

in Pro(c"). 
Now let us formulate the principal result of this paper. 
Let E, be the n-dimensional Euclidean simplex x~>-O,x~>=O, ...,x,>=O, 

xa+x2+...+x,<=l. Let f ( x , y )  be a (single-valued) complex-valued function of 
x~C" and y~C z which is regular analytic in a neighbourhood of  {y~215 where 
y0 is a given point in C ~. Put 

(1) g(y) = f ~.f(x, y) dxi.. ,  dx,,  

which defines g as a regular analytic function in a neighbourhood of y0. We 
then have 

Theorem 1. Assume that the function f in (1) is in Pm(C "+t) (i.e. can be con- 
tinued analytieally to a function in Pm(C"+t)). Then the funetion g defined by (1) 
is in Pm+.(c~). 

3. Proof of the main theorem 

Let us first prove Theorem 1 in the case n = 1. Then we have to consider a func- 
tion g(y )= f lo f ( x , y )dx ,  where the function f is defined and regular analytic 
in a neighbourhood of [0, 1] )< {y0} (with y0 ~ C l) and, moreover, belongs to Pm( C1 +t)" 
Thus g is from the beginning defined and regular analytic in a neighbourhood of 
y~ and our task is to prove that g can be continued analytically to a function 
in Pm+l(Ct). 

Let V(f) :  p(x, y ) = 0  be a manifold of ramification of f ,  corresponding to f 
by the definition of the class Pm(CX+~). I fp(x ,  y) does not contain x,p(x,  y)=-p(y) 
say, then clearly g is in K(CZ), and we can take V(g) as the manifold p ( y ) : 0  in 
C ~. If  the path 7 in C ~ belongs to B(V(g)), then the path ~7: t~ (0 ,  7(t)) in C ~+~ 
is in B(V(f)) ,  and since obviously we have (extending the integrand from a neigh- 
bourhood of x=O to the interval [0, 1] by analytic continuation) 

(T~__i)mg(y)__ 1 , m -- f s  (T~ -- I)  f ( x ,  y) dx, 

it follows that g is in Pm(C t) and thus also in Pm+I(CZ). 
So we can concentrate on the principal case that p(x, y) actually contains x. 

Then there is a manifold W: q (y)=  0 in C z, where q is a polynomial not identically 
zero, such that we have: when y q W the number of (different) solutions of the equa- 
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tion (in x)p(x, y ) = 0  is constant, =N,  say, and with convenient enumeration these 
solutions ~ (y) . . . . .  IN (Y) are regular analytic (many-valued) functions of y in C t \ W  
and do not coincide with 0 or 1 unless they do so identically, and further the ~j(y) s: 
do not coincide between themselves, when y varies in C*\W. Now g can be con- 
tinued analytically along any path in C t \ W .  For as y runs through such a path 7, 
starting at 9 ,  we can deform the path of integration continuously with respect 
to y in such a way that it - -  excepting the endpoints 0 and 1 - -  never passes through 
any of the points ~j(y). Further f can be continued analytically along the path 
t~-~(0, 7(0) (and along t~-~(1, 7(t)), similarly). For at the point (0, 7(0))=(0, y0) 
we have at the start a regular function element of f ,  and hence, by Cauchy' s formula, 

(2) f(x, y) (2~i)-~fl~t=n(z-x)-lf(z, y) dz, 

when the positive number 6 is sufficiently small and (x, y) sufficiently close to (0, 7 (0)). 
It is clear that the integral (2) defines an analytic continuation of f along the path 
t~-~(0, 7(t)), since the point 0 then never coincides with any of the points ~j(y), 
except those coinciding identically with 0, so that the circle of integration in (2) 
will go free of all the ~j (y): s if only 6 is sufficiently small. Using this continuation 
and the way the ~ (y ) :  s are defined we see that in the process of  deformation of 
the path of integration (and the corresponding continuation of f )  we have all the 
time a regular branch of  f along the whole of this path. Thus the desired continua- 
tion of g follows, i.e. we have gEK(Ct), with V(g)=W. 

Now let us turn to the proof of the relevant formulas of monodromy. Then 
we have to consider a path 7 in B(W); that is, apart from homotopy, ? will be of 
the form 7 /  t~*c~(re2~z) (0----<t~l), where all the l coordinates of ~(z) are regular 
analytic branches of  algebraic functions of z in a region izl>ro in the complex 
plane, and where 7, does not pass through any point of V(g)= W when r>ro. 
We must prove that to every function element go of g (in a neighbourhood of any 
point 7,(0) (where r>r0) ) there is a positive integer k such that (Tk--I)"+lgo=O. 
For then, of  course, the corresponding formula follows also for any closed path 
homotopic to 7, in Ct\V(g). 

We shall, then, have to study the behaviour of the points rl~(z)=~j(e(z)) as 
z varies along circles in the complex plane. Obviously the qj (z): s are regular analytic 
algebraic functions of z in some (pointed) neighbourhood of co. First let us consider 
the somewhat simplified case where for all large positive r we have that when y 
is close to ),,(0) (=~(r)) ,  then go(y)-=f~o fo(x, y) dx (integration along the interval 
[0, 1]), with some branch fo of f ,  and further, that all the points rlj(r) are non-real, 
except if rlj(z)-O or =--1. Now each of the functions rlj(z) can be expanded 
in a Puiseux series 

(3) q j ( z )  = 2 . ~  _ ~  a j, ~z ~/s, 
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where s is a positive integer, which can, of  course, be taken the same for allj. Study- 
ing the variation of  the ~/j(z): s as z runs through a path, we shall assume that for 
every z the value of  z ~/s in (3) is chosen the same for all j and i. We also know that 
the expansions (3) contain only a finite number of  non-zero terms with i >  0. 

Now let us divide the ~i(z): s into different "rings", in each "ring" taking such 
~/j (z): s for which irt the leading term of  the expansion (3) the exponent as well 
as the absolute value of the coefficient (respectively) are the same. It is easily seen 
that for every sufficiently large real number r there are, corresponding to our "rings", 
finitely many annuli with centre 0 (where the radii 0 and oo are permitted), disjoint 
but for the boundaries, and covering the whole plane, such that when z runs through 
the circle Izl=r, then all the t/j(z): s ~ 0  belonging to any of  the "rings" will vary 
in the corresponding annulus. Clearly the radii of the armuli can be chosen as func- 
tions of  r of the form ar  b, where a and b are real constants. With the help of  these 
annuli we make a deformation of  the original path of integration (i.e. the interval 
[0, 1]) as in Figure 1. 
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The angle 0 corresponding to the straight piece a in Picture 1 is taken as d.  arg (z), 
where d is the exponent of  the leading term of  the expansions (3) of  the t/j(z): s 
belonging to the corresponding "ring". Assume first that for all the t/j (z): s different 
from 0 and 1 the coefficient of  the leading term in (3) is non-real. Then it is clear 
that the deformation described fully suffices for the continuation of go (our function 
element of  g) along 7r: t ~ - ~ e ( r e ~ t )  when r is sufficiently large. When z ( = r e  ~ " )  

has run through the circle Izl=r s times, all the straight pieces will lie on their 
original places on the real interval [0, I]. We are now going to show that 

(4) (T~P- - I )~+ lgo=0  
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for some positive integer p. To calculate the left member of  (4), we first consider 
T~g o, when q is a positive integer. By the process of continuation, corresponding 
to the deformation described above, T.;qgo(y) is, for y close to the point yr(0), 
a sum of integrals over the straight pieces (now subintervals of [0, 1]) and over 
circles Ixl=const. ;  in both cases the integrated functions are branches of the 
function x~-~f(x, y), and these branches we must now describe more exactly. 

Let us do so for a straight piece tr corresponging to the leading exponent #/s 
in the expansions (3) and for the circle gr (with centre 0) passing through the right 
endpoint of a. Here xr means the circle run through once in the positive sense, 
and we use the natural parametrization. For shortness, let us drop the index r 
a while, writing simply y, x, etc. 

Let :~ and ~ be the following loops in C1+1: ~(0)-~-(~(0), '~(0)), and ~(t)=- 
(z(0), ~(t)). Then, clearly, in T~qgo the integrand on a must be T~qTffqfo, fo again 
being the branch of f that we originally have on a. For as z runs through the 
circle ]z[ = r  s times, a rotates [p[q times in the negative sense (in the deformation 
we clearly have to consider only the "rings" corresponding to leading exponents 
in (3) that are <0).  Here we have also used that T~ and T~ commute on f0, i.e. 
that T~ T~fo=T~T~fo. This follows at once from the fact that the points tb(z ) 
keep away from g so that when y runs through ~ we can correspondingly continue 
f0 on the whole of z. This commutativity will be essential to our description of 
integrands, also in the sequel. The same argument also gives the slightly stronger 
result that ~ and ~ represent commuting elements in the fundamental group of  
C ~ + ' \ V ( f )  at (z (0), ~ (0)). 

It follows that for (T~V--I)m+lg o, where p is a positive integer, the integrand 
on a is ((T~T~)V--I)'~+Ifo. Thus, if the path ~ 2  ~ is in B(V(f)), we can conclude 
that there is a positive integer k such that the integrand on a vanishes when p=k 
and thus also when k divides p, since the polynomial (t p -  1) m+x is then divisible 
by (t k -  1) m+l. So let us see that a certain class of loops of the form ~ b  (a, b being 
integers) is contained in B(V(f)) (in the more intricate study below of the contribu- 
tions from the circles it will not be enough with just ~s~). Let #'/s be the leading 
exponent in (3) for the "ring" next outside the "ring", corresponding to the straight 
piece a. Then we have p<=#', and clearly we have only to consider the case # < # '  
(since straight pieces a corresponding to the same leading exponent in (3) move 
with the same angular speed in the deformation). We now state that fl---~'~ and 
f i ' = ~ "  are both in B(V(f)) when r is large enough, and, more generally, that 
this is also true for fld(fl,)n, whenever d, d '  are integers =>0. To see this for fl, form 
~(z)=(2az ~, ct(z~)), where a is the modulus of the coefficients of the leading terms 
in (3) correspondir~g to the "ring" of a, and where, of course, a is still the algebraic 
mapping defining the loops ~r: 7,(t)=a(re~"*t). It is clear that in some pointed 
neighbourhood of infinity ~ is regular analytic and single-valued and does not 
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take on values in V(f) .  For by the expansions (3) (and the definition of "rings") 
it follows that for every .j we have either Itlj(zOl>2alz ~'] or ltlj(zOl<2alz"l when 
]zl is large enough. Further, when the positive number r~ is large enough, the loop 
t~-,-~(rle 2'~it) is homotopic to the loop f i = ~  in C t + t \ V ( f ) .  For if we choose 
r~=r a/~, then we have ~(rte2'at)=(2arU/~e 2'~ut, a(re~'U~t)). But clearly one representat- 
ive of  the homotopy class of fi is the loop t~--,-(n(O)e 2~iut, a(re~'~i~t)), which by an 
obvious deformation in the first coordinate only (using the properties of the "rings") 
is seen to be homotopic to the loop t~--~(r~ee~U). This proves that f iEB(V(f)) ,  as 
asserted. For fl' ( = ~ ' )  the proof is similar, but with the above 5 replaced by 
5"(z)=(bz~"/2, a(z')), where b is the absolute value of the leading in coefficients 
(3), corresponding to the "ring" next outside that of a. Finally, for fla(fl,)a' (where 
d and d" are integers >0)  we cart take ~d,a,(Z)=(Z au+a'u', ~(za~+d'~). For when 
Izd~+a'~l=r ~ we have ]z~'+gXl=r~, with e=(dkt+d'#')/(ds+d's),  and hence 
#/s<e<kt'/s. So we can use the same argument as above, since these inequalities 
mean that z au§ will lie strictly between the points ~/j(z n'+n'~) of two "rings". 

Thus we have proved that for all non-negative integers d, d '  we have 
fla(fl')d'EB(V(f)) (trivially rid belongs to B(V(f ) ) ,  since fi does, and similarly for 
(fi,)d'; these cases were considered above only for d =  1 and d ' =  1). Further we 
have shown that the contribution to (T~ ~'-I)m+ag o from the straight piece a vanishes, 
if only p is divisible by some positive integer k. Now let us turn to the contribution 
from the circle n. Let 2 be the positive in teger /x ' -# ,  with #, #' as above. When z 
runs through the circle ]zl=r s times, then in our deformation the number of 
times that ~ is run through increases by ).. Using the above description of the inte- 
grands on the straight piece a, and then continuing along • we see that, in T~qg o, 
on n~ we have to integrate (the continuation along gz of) the sum 

2 q - l T ~ . i T s q T , u q  f T S q T , u q  - j = o ~  ~y ~ Jo-=--~ ~ .~=loT~Jfo = 9q(T~, T~)fo, 

where ~oq is the rational function 

~'q-.~ ~a- l -~J ~ ' ~ ( ~ . . -  1)/(~ ~ -  1) = ( ( r  1). 9 q ( ~ '  /~) = "t X . a j = 0  ' t  = 

From the binomial theorem it follows that in (T~P-I)"+lg o our integrand on z ~ 
is T(T~,, T~)fo, where ~ is the rational function 

~(~, ~) = ~ = ~  (_ 1)m+~_ j m 1 % A ~ ,  ~) 

-- ( , # -  1)-~ ((~,~,')~ - 1 ) -  ( (~  ~)~  - 1)~+0. 
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So we have 

(5) ~(~, ~) - Z~. o ( ( ~ ' ) . -  1 ) J ( (~ . )~-  l) ~-j. ~/~- 1 

Since 2 - - p ' - p ,  the first factor to the right in (5) is equal to ~f times a polynomial. 
By the lemma at the end of this section the polynomials ( X - 1 ) J ( Y - 1 )  m-/ (where 
O<=j<-m) all belong to the ideal in the polynomial ring Q[X, Y] generated by the 
polynomials (XaYb--1) m, where a,b are integers >-0. Hence, replacing X by 
(~s~/,')p and Y by (~stf)P, and letting Q,(~, ~/) be the ring of all rational functions 
of the form h(~ t/)/r/s, where hEQ[~, t/] and jEZ (the integers), we get from (5) 
that ~ belongs to the ideal in Q,(~,~/) generated by the rational functions 
((r where a, b are integers _~0. Replacing ~ by T~ and t/ by 
T~ and using that, as proved earlier, every fia(fl,)b is in B(V(f)) (where f l = ~  
and f l ' = ~ " ' ) ,  and that T~ is invertible, we conclude that ~,(T~, T~)fo=O if 
p is divisible by some positive integer k'. For we only have to involve finitely many 
pairs (a, b), and for each of them we know that ((fia(fi')b)P-I)m+lfo=O, if only 
p is divisible by some positive integer ka, b. SO we have shown that in (T~P-I)m+lg o 
the contribution from the circle z vanishes, if only k'[p. 

Applying the above results to all the (finitely many) straight pieces and circles 
of the contour of integration, we find that all  the contributions to  (T~P-I)m+Ig o 
vanish, if only p is divisible by some positive integer k0, and thus we have 
(T~P--I)m+~go=O then. This proves the theorem, under the simplifying condi- 
tions imposed above. 

Now let us see that these assumptions can be removed. For one thing we have 
supposed that in dividing the points ~lj(z) into "rings" according to the expansions 
(3) none of the leading coefficients was real. Now instead let us make the much 
weaker assumption that for none of the ~/j(z): s all the coefficients in (3) are real, 
unless ~/k(z) is identically equal to 0 or 1, i.e. we demand that all the ~/j(z): s are non- 
real when z is large and positive, with the mentioned (possible) exceptions. Then 
one must in general refine the deformation. So, in every "group" of points tlj(z) 
having the same leading real coefficient in (3), make a partition into "rings" of 
second order, in the same way as for the "rings" above, but now according to the 
second non-zero term in the expansions (3). If  we make the same deformation as 
above (thus with respect to the "rings" of first order), this will in general not suffice 
to avoid the points tlj(z). But these points can cross the contour of integration 
only at the straight pieces, since they stay in the annuli described above. Let a be 
one of the straight pieces in our deformation. If, in the corresponding "ring" of 
first order, there is no point t/j (z) the leading coefficient of which (in (3)) is real 
(or even positive), then we do not have to deform a further, since the points tlj(z) 
of our "r ing" cannot cross the contour (and the deformations with respect to all 
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the other "rings" will all be made within the corresponding annuli), On the other 
hand, if there are points r/j(z) of our "r ing" with a positive leading coefficient in 
(3), then this coefficient must be common (and hence the whole leading term), i.e. 
these r/j (z): s all belong to the same "group" (of first order). Further, this common 
leading term ~ (z) (say) will be a point lying on a throughout the process of deforma- 
tion. From our assumptions on the ~/j(z): s it follows that ~li(z)#~(z) for all j 
and large complex z. Now, on the above deformation of first order we superpose 
a deformation of the straight piece a. This deformation is made in the same way 
as that of  first order, but now with respect to the "rings" of second order in the 
"group" that goes with ~(z), and, of course, with ~(z) as the centre of the annuli. 
To be sure, a now lies on both sides of the centre ~(z), (unless ~(z)---1), but we use 
the obvious generalization to a double-sided deformation. Also, we perform simultan- 
eously the corresponding deformations of all the straight pieces in the deformation 
of first order. A typical picture of the deformation with respect to "rings" of both 
first and second order is given in Figure 2. 

@ 

\ ". / ,' 

r 

2 

Fig. 2 

If all the second coefficients in (3) are non-real when the first one is real, then the 
described detbrmation is sufficient. If  not, we go on in the same way, getting "rings" 
and "groups" of order 3, 4 . . . . .  Since there is only a finite number of points tlj(z), 
and none of them has got all its coefficients real (except when r/j(z)_~O or -1 ) ,  
the process of repeated subdivision will stop after a finite number of steps. It is 
clear that the simultaneous deformation with respect to all the "rings" of different 
orders is such that no point qj(z) ever crosses the contour of integration, when I z] 
is large enough�9 So this deformation suffices to give the continuation of our in- 
tegral along the loops ~,. It is also easy to see that the above argumentation for 
the vanishing of the integrand holds also in the present more general case. For 
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instance, we can apply the linear mapping x~-*x/~(z)--I in x separately to be able 
to use the same description (apart from double-sidedness) of  the deformation around 
a centre ~(z) as in the simplified case. At this, the crucial loops in the latter case 
correspond, by the inverse mapping to loops 6, of the form t~-*fl(re~it)~Cl+l, 
with fl algebraic, regular analytic, and single-valued in a pointed neighbourhood 
of  oo. Further, it is in the nature of  the deformation that every such 6, does not 
intersect the critical manifold V(f) ,  when r is large enough. But this is precisely 
what it takes to make these loops 6, belong to B(V( f ) ) .  So we see that the whole 
proof  works also in the more general case that we have now considered. (To handle 
this case, it is also possible, using a similar argument, to divide the path of integra- 
tion into a finite number of  parts, for each of which one has the simplified situation 
treated earlier, even with only one "r ing" to have to deform for.) 

Thus it remains only (in the case n =  1) to remove the assumption that when 
z is large and positive none of the points qj(z) lies on the real line, except possibly 
at 0 or 1 (and in that case identically). Now qj(Z)--qk(Z), qj(z)--O, and qj (z) - - i  
are for all j and k, algebraic functions of z. Using their Puiseux expansions, we 
can easily see that when z is positive and sufficiently large, the (deformed, since we 
have started the continuation of g at an arbitrary point in C l) contour of integra- 
tion can be composed of a finite number of straight line segments, each having 
endpoints that are algebraic functions of  z (e.g. of  the form ~lj(z)+cz a, where c 
is a complex and a a real constan0, and where the points qj(z) keep away from the 
straight lines prolonging the segments (unless qj(z)~O or --1 and the segment 
is one of the extreme ones). For  each of  these segments we then have the simplified 
situation already treated (using entire linear mappings in x, depending algebraically 
on z, one easily reduces oneself to the case that the endpoints of the segment are 
0 and 1). Performing the deformation of all these segments at the same time, in 
the manner described above, we find also in the general case that if only the integer 
k is divisible by some positive integer k0, then for large r (T~-I)m+Igo is the in- 
tegral of the zero function along some contour, and thus vanishes. This ends the 
proof  in the case n = 1. 

To prove the theorem in the case of  a general n, we use induction over n. Thus, 
assume that Theorem 1 is true when n=p, and consider the case n=p + 1. Then 
we have 

g ( y )  = f E,+lf(x, y)dx= f E f~(xl, ...,x,, y)clxl...ax~, 
with 

f l--X1--"" --Xp ~ l  
WI(X1 . . . . .  x , ,  y )  = J O J t X '  y ) d x p + I  

1 
= (1 - - x l - . . . - - xp )  .fs . . . . .  x p ,  t(1 - x l - -  ... -xp) ,  y) dt. 
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Clearly f~ is regular analytic in a neighbourhood of Ep• {y0}, and the last integrand 
is so (as a function of (xl, ..., xp, t, yl ,  . . . ,YO) in a neighbourhood of Ep• 
[0, 1]X{y~ Further, since fEPm, it follows from the remarks of Section 2 that 
the last integrand is a function in Pm(CP+I+t), for of course (xl, ..., xp, t ( 1 - x  1 -  ... 
--xp),y) is not identically contained in any genuine algebraic sub-manifold of 
CP+I+( From the result in the case n = l  we conclude that f6P,,+I(CP+I). By 
the induction hypothesis it then follows that gEP,,+p§ This completes the 
induction and by that the proof of Theorem 1, as soon as the following lemma 
(referred to above) has been proved. 

Lemma. (TrAng--Bj6rk--Scarpal6zos) Let m be a positive integer, and let 
( j l ,  k l ) ,  "-., (JN, kN) be pairs of  integers >0,  with N>=2m-2 that are pairwise 
non-proportional (over the rationals). Further let a, b be integers ~=0 such that 
a + b >= m. Then the polynomial (X - 1)a ( y _ l)b belongs to the ideal I in the polynomial 
ring Q[X, Y] (Q being the field of  rationals), generated by the polynomials 
( X - l )  m, ( r -  1)", ( x ; 1 Y ~ l -  1)", ..., (X i,~ Yk"- l )m.  

Proof. The proof is by induction, using the induction hypothesis H(i):  
(X--1)a(Y--1)b~I whenever a, b are integers _->0 such that a+b>-i. Now H(2m) 
is trivially true, since when a + b ~ 2 m  either a or b is =>m. In the general induc- 
tion step we have to prove that if H(i) is true for an i>m, then H ( i - 1 )  is true. 
For then the induction will give that H(m) is true, which is the statement of 
the lemma. 

To get a uniform description of the polynomials that generate/,  write (J0, ko)= 
(1, 0) and (JN+~, kN+0=(0, 1). Changing variables in the polynomials: s = X - 1 ,  
t =  Y-1  (which defines an automorphism of Q[X, Y]), we have to prove that 
when a+b>- i -1  we have s"tbCi, where _Tis the ideal in Q[s, t] generated by the 
polynomials ( (s+l)J , ( t+l)kr-1)  m (r=0,  . . . , N + I ) .  Using the induction hypo- 
thesis, that this is true when a+b>=i, we get from the binomial expansions that 
( (s+l)~( t+l)k~-- l ) i - l - - ( f i s+kr t ) i -1  belongs to i, and hence, since i - l>=m,  
that ( j , s + k , t ) i - ~ i ( f o r  r = 0  . . . .  , N + I ) .  That is, we have 

wi-1 ( i -  1) 
/,v=0( v (J ' /k*)svt i- l - 'Ei  (r = 1 . . . .  , N + I ) ,  

and also si--lE[. Since the numbers j,/kr are by assumption all different, and since 
N+2>-2m>=i, it follows by linear elimination that sVti- l -vCi whenever O<=v<=i - 1, 
which implies H(i--1). 
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4. Integrals on variable algebraic manifolds 

In this section we shall use Theorem 1 to obtain a result for the integral of 
a differential form with coefficients in the class P~ over a cycle on a variable al- 
gebraic manifold. 

Thus, let p l (x , y )  . . . . .  PrOC, y) be real polynomials in xER", where r<n,  
and in y~R l, and let Ry be that part of the algebraic manifold (in R") defined by 
px(x, y)=p2(x,  y) . . . . .  p,(x, y)=0,  where the differentials dxp~(x, y) . . . .  , dxpr(x, y) 
are linearly independent. Assume that for some y~ the set Ry, is non-empty 
and that we are given a (singular) k-cycle ~'0 on Ryo. Further suppose that we have 
an exterior differential k-form coy(x) in an open neighbourhood Q of 70, depending 
on the parameter y. Then we can write (uniquely) 

(6) coax) = Z1 f , ( x ,  y) dx,, 

where the sum is taken over all strictly increasing k-tuples I=( i l ,  ..., ik) with 
l<=ijNn for all j ,  and where dx1=dxilA...Adx~k. Let us assume that all the 
coefficients f~(x, y) are real analytic in the pair (x, y) in a set f2• O1, where ~21 
is an open neighbourhood of y0. Further we require that the restriction of coy(x) 
to Rrc~f2 is closed for all y near yO. Clearly we can, for y close to y0, define y(y) 
as a k-cycle on Ry in such a way that 7@~ and that 7(Y) varies continuously 
with y in the uniform sense. Then the function 

(7) g (y) = f~(,~ co, (x) 

is defined in a neighbourhood o f y  ~ (in R~), and it is easily seen that it is real analytic 
in such a neighbourhood. The germ of g at yO is clearly independent of the particular 
way Y~-~7(Y) of deforming 70, since c%(x) is closed on Ry. We now have the 
following theorem. 

Theorem 2. Assume that all the coefficients f l  in (6) are in Pm(Cn+l+t), i.e. 
every local element o f  them can be continued analytically to a function in Pm(C "+1+l) 
(where the critical manifolds V(f~) may intersect {70}X {y0}). Then the function g 
defined by (7) is in Pm+k(Ct). 

Remark. Theorem 2 easily gives a corresponding result for complex algebraic 
manifolds. Then, of course, one lets y-space be C ~ and assumes coy(x) also to be 
holomorphic with respect to y in a neighbourhood (in C t+") of {y0}• {7o}. For, 
in order to apply Theorem 2, we cortsider the Ry: s as manifolds in R ~" and first 
restrict y to a neighbourhood o f y  ~ in the set y~  (clearly the function g, as defined 
by (7) also in the complex case, will be holomorphic in a neighbourhood of y0). 
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Proof of Theorem 2. Let us choose (oriented) Euclidean k-simplices $1 . . . . .  Sq 
lying in an open subset of R", where short distance projection along the normal 
planes {x~  gradxpl(x ~ y~ gradxp,(x ~ yO); t ieR,  all j} (with x ~ on Rso ) 
is uniquely defined and real analytic when y is sufficiently close to y0, and where 
the projections of  the simplices S i constitute a k-cycle on Ry, homotopic to Y (Y) 
in Ryc~O, O being the above-mentioned neighbourhood of  70. In the definition of 
g replacing ~ (y) by the cycle made up of  the projections of the Si: s on Ry, and 
mapping each S, affinely onto the unit simplex E k we can write 

g (Y) = f~k r(~,  y) d~, 

where F(~, y) is a sum of terms of  the form ~o(~, Y)fi(O(~, Y), Y), where f1 is one 
of  the coefficients of  coy(x) (in (6)), while (p and ip are algebraic and real analytic 
in a neighbourhood of  Ek • {y0}. Clearly we can, if necessary, in a convenient way 
add a new variable to y (e.g. in the equations of  the manifold) to achieve that 
(0 (4, Y), Y) does not belong identically to the critical manifold V(fr) in any of these 
terms, and we assume that this has been done. Then F is in P,,(Ck+l), by the ob- 
servations in Section 2. Further F also extends to a regular holomorphic function 
in a neighbourhood (in C k+~) of Ek• {y0}. Thus, by Theorem 1, g can be extended 
to a function in P,,+k (Ct). Since we have possibly added a new variable to y (Yl, say), 
it remains to show that the function &(yl  . . . .  ,yt_x)=g(yt ... .  ,y l_t ,y  ~ is in 
Pm+k(C t-l) (we may suppose that the value y l=y  ~ corresponds to the original 
function g, now called gl). Put Y'=(Yl . . . . .  Yl-1), and let the critical manifold 
V(g) be given by the equation p(y ' , yO=O.  We can write p(y ' ,y l )= 
(YI-Y~ (y,, Yl), where j is an integer -> 0 a n d p t ~  polynomial such that p~ (y', yO) 
does not  vanish identically as a polynomial in y'. Now let us prove that 
g~CP,,+k(Ct-~), with V(gl) equal to the manifold W: pt(y', y~ 

When y '  is close to (y,)0, we have by Canchy's formula 

(8) gl(Y') = (2~i)-1 fl~_y0l=6 (l/--y~)-ag(y',  tl) d~l, 

if the positive number 6 is small enough. It is easy to see that by (8) we can continue 
g~ analytically along any path in C t - t \ W ;  we must only take 6 so small that 
Pl(Y', q)r for all y '  on the path and all t /with Iq-y~ To see that ga satisfies 
a monodromy formula of the required kind, we have to consider an algebraic mapp- 
ing C3z~-~ct(z)~C t-~, which is regular analytic and single-valued in a pointed 
neighbourhood of co, and where further e (z)r W when [z I is sufficiently large. Con- 
tinuing g~ along the loops fl,: t~-~ct(reZ~t), by the use of (8), and wanting to prove 
that (T~--I)m+kgl--~O , it will be enough to show that we can choose the corre- 
sponding radius 6 of (8) of  the form r -N, with N a positive integer, such that the 
loop fl , :  t~-~(fl~(t), y~ lies in C ' \ V ( g )  for all sufficiently large r. For 



Monodromy and asymptotic properties of certain multiple integrals 195 

then it is in B(V(g)), so that (Tjr--I)m+kgo=O for some positive integer i, where 
go denotes the function element of g appearing in (8) for the arbitrary element of 
gt for which we want to show the monodromy formula. Since it is in the nature 
of  the method of  continuation that we have all the time a single-valued element 
of g on the circle of integration, continuation along/~r gives the same result as along 
the loop t~-~(flr(t),y~ that is, the loop run through by the point q =  1 in 
(8) in the continuation. It follows that we have (Tj--I) '+kglo=O for any ele- 
ment gl0 of gl and for some positive integer i (=i(g~0)). So it only remains to see 
that the integer N can be chosen as stated. We know that h(z)=p~(a(z), yO) is 
different from zero when [z I is large enough. Expanding h(z) and a(z) in Puiseux 
series we see that if we choose N large enough we also have p~(a(z), yO+ Qz-N)~0, 
and thus also p(a(z),y~162 when ]z[ is large enough and 0 < ~ = 1 .  This 
implies exactly the properties needed, and so Theorem 2 is proved. 

5. The asymptotic behaviour of certain integrals 

Let us start this section by defining a subclass APm (C") of  Pro(C"), by imposing 
a growth condition (the same as in Nilsson [3]). 

Definition. When m is a positive integer, APm(C") will denote the class of all 
functions f in Pro(C")Which also satisfy the following condition. There are real 
constants a=a( f )  and b=b( f ) ,  a choice V(f) :  p (z )=0  of the critical manifold 
of f ,  and further to every pair (kl, k2) of positive integers and every function element 
fQ of f at some point z ~ in C " ~ V ( f )  another real constant C =  C(kt, k2, fo, z ~ 
such that 

(9) If(z)] N C([z[ + 1) ~ ]p(z)l -b 

for all z E C " \ V ( f )  and every determination of f at z which can be obtained from 
f0 by continuation from z ~ to z along a path consisting of at most k 1 pieces, each 
being a regular algebraic path t~-~z(t) such that the defining polynomials of the 
coordinate functions t~-zi(t) can all be taken of total degree ~k2. 

As art application of Theorem 2 of this paper and Theorem 1 of Nilsson [3] 
we now give the following theorem. 

Theorem 3. Let f be a real-valued function defined in an open subset 0 of R", 
and assume that f is regular analytic and algebraic in O. Suppose that there is a real 
number 20 such that the set Mz= {xE O; 20<-f(x)-<_-2} is compact for all real numbers 
2. Let the complex-valued function g be defined and real analytic in O, and, moreover, 
suppose that g is in AP,,(C"). Put 

e(2) = ~f" g(x) dx (2OR). 
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Then we have e(4)=~-~j +o -1 (log 2)Jej(2) (2ER), where each of the functions ej(4) 
has, for 2 large and positive, a Puiseux expansion ~ =  -~  ajk4 kls, where s is a positive 
integer, and where ajk ~O for at most finitely many positive k. 

Further (as a consequence of this expansion of e(4)) there is a rational number 
e and an integerp, with O<=p<-m+n-1, and a complex constant C such that 

(10) e(2) = C(1+o(1))2C(log2)" (2 -++~,), 

and this formula can be differentiated any number of times, in each step taking the 
derivative of  1+o(1) as o(1)4 -1. 

I f  e~O, we have actually O<-p<=m+n-2. In particular, i f  g is algebraic and 
i f  e(4) tends to either 0 or oo at least with some negative or positive (respectively) 
power of  4, then (10) is valid with O~=p~n-1. 

Proof. Put f20={xE~2; f (x)>20} and G={xEg20; df(x)=O}, and let us see 
(using standard methods in algebraic geometry) that f (G)  is a finite set. For this 
it is, in view of Sard's theorem, sufficient to show that G has only a finite number 
of connected components. To do so, let us consider non-trivial algebraic equations 
(in y) p(x, y ) = ~ o p j ( x ) y  j and q(x, y ) = ~ 0  N qk(x)y k satisfied by f ( x )  and h(x)=  
lgrad f(x)[  2, respectively, when xCf20. Of course we can take the polynomials pj 
and qk real. Also put r(x,y)=p(x,y+4o)=~Morl(x)y 1. By a linear change of 
coordinates we can achieve that for every (x~ . . . .  , x,)ER "-1 neither pM(x) (=rg(x) )  
nor qN(x) vanishes identically as a polynomial in xl. Then the equation (in y) 
p(x, y ) = 0  has, for any xER", exactly M complex solutions (possibly infinite and 
possibly coinciding) defined by considering y as an algebraic function of xl separately, 
and f ( x )  is one of these solutions for every xEf2~. The corresponding statement 
is valid for the equation q(x, y ) = 0  and h(x), and, of  course, for r(x, y ) = 0  and 
f ( x ) - 2 0 .  Let F be the (finite) class of the algebraic manifolds (in the natural com- 
pactification CR" to a closed ball in R", say) {x; OUpj(x)/Ox~=O}, {x; Ovqk(X)/OX~-O}, 
{x; O~rl(x)]Ox~=O}, and the infinity plane (where /~, j ,  v, k, a, l vary in the non- 
negative integers). Then there is a (finite) triangulation of CR" such that each of 
the manifolds of F is a union of faces (of some dimension) of the simplices of the 
triangulation (cf. van der Waerden [7], app. of Chap. 4). From this we can see 
that R" is the disjoint union of a finite number of connected sets L such that the 
number of roots of the equation p(x, y ) = 0  equal to infinity is constant on every 
L, as well as the number of them equal to 20, and that the number of roots of the 
equation q(x, y ) = 0  equal to zero is also constant on every L, and that further 
all the roots of both equations vary continuously on L. Now ~2 o must be the union 
of such sets L. For we have that on any L all the finite roots of p(x, y)=0 are locally 
bounded, and those different from 20 are locally bounded away from 20 . So, assum- 
ing that L intersects ~0 as well as its complement, we choose a point ~EL in the 
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closure of  Lc~f2 o but not in s we get a contradiction, since c~ must lie on the 
botmdary of f2 o, so that either f(x)--,- + oo or f ( x )  ~2o when x-*s,  xC O0. 

Again by the properties of the sets L, we have that h (x)=  [grad f (x) [  2 on every 
Lc f20  either vanishes identically or has no zero at all. So G={xEOo; df(x)=O} 
is the union of some of  the sets L (which are finitely many and connected). 

Let us suppose that the number 2o of  the present theorem is larger than 
max f (G) ,  which is no restriction, since changing 2 o means only the addition of 
a constant to e(2), giving a new expansion of e(2) of  the same kind (and the rest 
of  the theorem will follow from the expansion). It is then clear that e(2) is a regular 
analytic function of the real variable when 2>20 , and that then 

(iX) de (Z)/dZ = f s~ gdx/df, 

where S~ is the (real analytic) manifold f ( x ) = 2 .  Now we can apply Theorem 2 
to the integral (11). For  S~. is all orientable compact C ~ manifold in R" of  dimen- 
sion n - 1 ,  and hence, as is well known, an (n-1)-cycle.  Also, it varies continuously 
with 2. Further the differential form gdx/df, which we can regard as a differential 
form on an open subset of R" is clearly closed on every S~ and has coefficients which 
are regular analytic in a neighbourhood of  Sz and belong to APm(C ~) and hence 
also to APm(C~+I), including 2 as a variable. For it is evident that the product of 
an algebraic function on C ~ and a function in APm(C ~) is in APm(C"). So by Theorem 
2 we get that de/d2 is in Pm+,-I(C). Further Theorem 1 of  Nilsson [3] gives that 
de/d2 satisfies the growth condition for AP,~+,_I(C). For the requirement of that 
theorem of  linear finiteness of  tile integrand is not used in proving that the integral 
obeys the growth condition. Thus the function de/dA has the following properties: 

i) There is a positive constant k such that de/d2 can be continued analytically 
along any path in the complex region [2[>k. 

ii) There is a positive integer s such that in this region we have 
( T S - I )  ~+"-~ (de/d2)=O, where T is continuation one round in the positive sense 
along circles 121=constant. 

iii) To every branch E of  de/d2 in the region 12{>k, - z c < a r g  2 < ~  there are 
real constants a and K such that IE(~)[<=KI2[ a for all 2 in the region. 

By a simple induction argument it follows from the properties (i) and (ii) that 
de(2)/d2 can be written in the form ,~m+n-2 z~j=0 (log 2)~hj(;t), where the hj s are (in 
general many-valued) analytic functions in the region [2[>k, all satisfying 
(T*-I )hj=O.  Further each hi(2 ) is a (finite) linear combination of terms of  the 
form (log 2)iE(2), where i is an integer and E a branch of  de/d2. So it follows from 
(iii) that the h j: s grow at most polynomially, and thus their Puiseux expansions 
have only a finite number of  terms with a positive exponent. Integrating de/d2 
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term-wise (using these expansions o f  the hi:  s), we get the desired expansion of  
e (2), since the exponents o f  the logari thms increase by at mos t  one at the integra- 

tion. The asymptot ic  propert ies o f  c Q.) follow at once f rom the expansion, except 
the refinement in the case c ~ 0  (in (10)). But in this case the leading term in the 
expansion of  e(,~) is C2 c (log 2)~, where c ~ 0 ,  and where we have used the nota-  
t ions o f  (10). So it must  have come f rom integrating the term Cc2 ~-1 (log 2)P in 
the expansion o f  de(2)/d2, and thus we have O ~ p < - r n + n - 2 .  This completes the 

p r o o f  o f  Theorem 3. 
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