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The content of this paper is essentially that of our "Diplomarbeit" written at 
the university of Bielefeld under the guidance of Prof. H. Leptin. 

. 

Let FI(R") be the subalgebra of all functions in C~(R"), which are Fourier 
transforms of functions in La('R"). The elements of the dual PM(R") of FI(R") 
are called pseudomeasures. Considered as distributions the pseudomeasures are 
just the Fourier transforms of essentially bounded measurable functions. 

For a closed ideal I in Fa(R") the cospectrum of I is defined as the set of 
common zeros of the functions in L 

For a closed subset E of R", we denote by j(E) the smallest, by k(E) the biggest 
closed ideal with cospectrum E. 

It is well known that the quotient algebra 

r(E) := k(E)/j(E) 
is a radical algebra. 

For certain manifolds it has been proved that r(E) is even nilpotent. E is said 
to be of spectral synthesis if r ( E ) =  {0}. 

So C. Herz [4] showed for the circle S 1 that r(S1)= {0}, and Varopoulos [11] 
proved more generally that for the (n-1)-dimensional sphere S " - '  the algebra 

r (S" - ' )  is nilpotent of degree [ - ~ ] .  F. Lust [8] discovered that r(E)={0} for 
I_ J 

each closed orbit of a one-parameter group. 
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Y. Domar  [1] proved that for compact subsets E of (n-D-dimensional  sub- 
manifolds of  R" with non-vanishing curvature the algebra r(E) is nilpotent of  

degree [n~___Jl[ provided that E satisfres a certain technical condition. He also 
L J 

gave an example [2] of a C=-curve in R ~ without spectral synthesis, thus showing 
that the curvature condition is essential. In this paper we investigate orbits in R" 
under the action of  a general connected subgroup G of  GL(n, R). Among other 

m 

things we shall prove that if E is a closed orbit of  dimension m, then r(E)  [-r = {0}. 
This follows easily from a more general theorem (Theorem 1) about certain com- 
pact subsets of  a general, not  necessarily closed orbit co = Gxo= {gx0; gEG}, x0ER", 
of G in R". The result on r(E), E closed, was already conjectured by H. Leptin in [6]. 

The proof  of  Theorem 1 follows the line of  the proof  Domar gave for his 
main theorem in [1]. We also thank Prof. Domar  for his interest and valuable com- 
ments on the subjects of  this paper. 

. 

In the following we denote by G a connected Lie group acting con~ auously 
on R" by linear transformations. 

For  xER" let 
co = Gx 

be the orbit through x and H:---Hx the stabilizer of  x. 
Transferring the C=-structure of  G/H to co via the canonical mar ing we 

consider co as a regular submanifold of R". 
While for closed orbits the topology defined by the Ca-structure is qua1 to 

the topology induced by R", this is not true in general. (see Helgason [3], Ch. II, 
Ex.; Hochschild [5]). Nevertheless both topologies induce the same topology on 
any compact subset of  the manifold co. 

The following definitions carry over the notion of the "restricted cone property" 
used by Domar in [1] to our situation. 

A subset P of  G is called an approximation set, if the identity e of  G lies in the 
closure of  the interior of  P. 

A compact subset E of co is said to have the convolution property, if  for every 
xEE there exist a neighbourhood Ux of x in E and an approximation set P~, such 
that P~U~cE. 

Now we can state our main result: 

Theorem 1. I f  co is an m-dimensional orbit of G and E a compact subset of co 
having the convolution property, then 

r(E) [m/2+l] = { 0 } .  
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This theorem contains for m = 1 the result of F. Lust [8]. Of course for n >  1 the 

degree of nilpotency of r (E) may be smaller than [ 2 + 1  ], e.g. r ( E ) =  {0} for every 

fiat orbit E. The determination of the exact degree of nilpotency of r(E) would 
require a Littman type estimate of the Fourier--Stieltjes transforms of measures 
supported by E (see Littman [7]). 

. 

I. Now we shall prove Theorem 1. 
In the following we denote by E a compact subset of o) having the convolu- 

tion property. 
The following definitions are essentially due to Domar [1]: 
1 ~ Let B(E) denote the space of all bounded measures on R n with support 

in E. B(E) can be considered as a subspace of PM(Rn). 
2 ~ For every integer i=>l, let Ji(E) denote the space of all test functions 

in ~(R"), which vanish on E together with all partial derivatives up to the order i -  1. 
3 ~ For every integer i __-> 1, let C,(E) denote the annihilator of Ji(E) in PM(R"). 
The closure of B (E) is just the annihilator of k (E) in PM(R"), where the closure 

is taken in the weak* topology a(PMOi"), FI(R')). Obviously we have Jl(E)ic 
cJi(E), hence Jl(E)icJi(E) for every integer i=~l. 

The following theorem is an easy generalization of Domar'  s theorem 2.9.4 ~ in [1]: 

Theorem 2. Let M be a smooth, m-dimensional submanifold of R" and let E 
be a compact subset of  M. Furthermore suppose that )rE F1 (R') has compact support, 
TCPM(R ~) has its support in E and 

I~(x)l  = ~(Ixl r 
n 

as x - ~ ,  where --~-<~-<_0. Let 

Ifl.,~ :=  sup {If(x)l ; dist (x, E) ~ 2@ 
Then 

(T , f )  = (9(e -~-cm/~) lfl~,~) 
as ~ 0 .  

This result goes back to Beurling, Pollard and Herz. We omit the proof, because 
the proof given by Domar in [1] can be adopted with only slight changes. 

We apply Theorem 2 to functions fEJi(E). Using Taylor expansion of f around 
boundary points of E, we derive easily the estimate 

For TE PM(R ~) clearly 
I ~ ( x ) l = 0 ( 1 )  as Ixl ~ .  
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Thus Theorem 2 yields 
(T, f}  = 0 

for all fEJt,,/~+ll(E) and TCPM(R") with supp T c E .  
Consequently, by Hahn--Banach theorem, we have proved 

J[rn/2+l](E) = j (E) ,  

because the annihilator of j (E)  consists precisely of all pseudomeasures T with 
supp T e E .  

Remembering that J1(E)tml~+xI~Jtm/2+11, we have shown: 

Corollary 1. Jx(E)[m/2+l]:j(E)~ 

To prove r (E)  t"/~+11 = {0}, 

or, equivalently, 

it is now sufficient to show 

7,(E) = k(E) 

B(E) = G(E).  

II. The aim of this section is the proof  of the following proposition, which 
will also finish the proof  of  Theorem 1: 

Proposition 1, I f  E is a compact subset of o~ which has the convolution property, 
then every TECI(E) is the weak* limit of a sequence {Tv}v of measures in B(E). 

We shall use the following two lemmas. The first one is a localisation lemma 
due to Domar. 

Lemma 1. Assume that every point xEE has an open neighbourhood UxCR" 
such that every TECI(EnU~) is the weak* limit of a sequence {Tv}vcB(E). Then 
every SECI(E) is the weak* limit of a sequence {S~}~ of measures in B(E). 

The proof  can be found in Domar  [1]. 

Lemma 2. I f  E is a compact subset of oJ which has the convolution property, 
then for every xE E and every neighbourhood V of x in R" there exist neighbourhoods 
V x and V~ of x in R" and an approximation set PeG,  such that 

~ c V 2 c ~ c V  and P . ( V l n E )  c V 2 n E .  

Proof. There exist an open neighbourhood 0 of  x in E and an approximation 
set P ' c G ,  such that P ' . O c E .  We have O=UnE for some neighbourhood U 

of x in R". We choose a neighbourhood V~" of  x in E, such that V 2" c V~' c V, and 

set V2:=UnV~, hence V2cUnV2"cV. There exist a neighbourhood W of e 
in G and a neighbourhood Vx of  x in R', such that W- V~c II2. Choosing a neigh- 



On the synthesis problem for orbits of Lie groups in R" 149 

bourhood V1 o f x  in R" such that V~cVx, we get V~cU. For  P:=P'OW we 

easily obtain P(V~ AE)c V2nE. 

Let xoEE. Lemma 2 allows us to choose suitable neighbourhoods Uxo, K2 
and V of  x o in R", an approximation set P and an open subset (2cco, for which 
O n E =  VnE, such that 

uxo c v ~ c V 2 c V ,  P.(U~onE) cV2nE, 
and such that f2 is covered both by a chart defined by the exponential mapping 
and by a chart (O', ~), where ~ is of the form 

~[I:X"'-" (X", ~t(X")), XtE~-~" C R m, I[r ", Rn-m). 

Now, by Lemma 1, it suffices to show that every TECI(Ec~-O-~o) is the weak* limit 
of  a sequence {Tv}~cB(E ). We shall prove this by using regularisations of 
pseudomeasures. 

The group G acts continuously on Fa(R") by isometrics, explicitly 

fo(x):=f(g-~x), if fEFI(R ' ) ,  gEG, xER". 

Let M(G) denote the algebra of  bounded Radon measures on G. For  gEM(G), 
fE F~ (R") let 

f,,:= fcf ,@(g).  

It is clear that F1 (R") may be regarded as a Banach M(G)-module. Choosing a fixed 
left Haar  measure dg on G we identify a function fELl(G) with the measure fdg. 
We define an action of  #EM(G) on PM(R") by 

(T~,,f):=(T, fu) for TEPM(R"), fEF~(R"). 

If /z  v is a sequence of positive measures with total mass one, such that pv(CU)~0 
for every open neighbourhood U of  eEG, then 

Tu~ ~ T in the weak* topology for every TEPM(R"). 

Now let TE CI(En Uxo), and let P be the approximation set choosen before. 
Choose a sequence {q~}, of  functions in ~(G)  such that 

9~>=0, f ~o~dg=l, suppq~v~P -~ fo revery  v, 

and such that See 9% dg~O for every open neighbourhood U of eEG. Thus we 
have T= l im  T~ . 

To prove Proposition 1 and hence Theorem 1 it remains to show that T~,EB(E). 
In the following we restrict our considerations to functions and. distributions 

on ~2'• "-m, because for every TECI(En-U--~oxo ) we have supp Tcf2")<R "-~ and 
supp T ~ , c  f2"•  



150 W. Kirsch and D. Mfiller 

We define a diffeomorphism T: O 'XR "-m -~O 'X R n-m by 

r (x', x") := (x', 0 (x') - x3.  

For ~oEN(~?'XR "-m) we set q~r:--q~ oF,  and for SEN'( f2 'XR "-m) wedefine S r by 

( s  r, ,p):= (s, ~r). 

Let TECI(En-U--~.); then supp T r c o ' X { 0 } c f 2 X R  "-m. 

For  a multi-index aEN ~-~ we denote by DI,, the partial derivation 

0~1 0 , . -  m 
3 lxx O .-mX,_m 

with respect to the decomposition x = ( x ' ,  x") for xER n, x'ER", x"ER n-~. 
Then it is wellknown (Schwartz [10]) that  for some unique distributions t~EN'(t2") 

with 

(supp t~) X {0} c supp T r c T -~ ( E n  U~o) ;( {0} we have 

r - Z ~ f ~ _ , D ~ , , ( t ~ ) ,  

where i~ denotes the extension of  t~ onto Y2'XR n-m, and p denotes the order of  T r. 
N n  --  m Now choose a multi-index fie , 0 < ] f i [ ~ p ,  and a test function ~E~(R"-~),  

~=--1 in a neighbourhood of  the origin of  R ~-~. For  ~ @ ( ~ ' )  we define 
OpEN(O'XR n-m) by 

n# 
t l  X p 

op (x', x") := ~ (x )  ~ o (x). 

Art easy computation shows that (T, 0 ~ = ( t  0, ~). But 0~EJI(EnU~0), hence 
(T, 0 ~ = 0 ,  and thus we have (tp, ~ ) = 0  for all 0E~(f2'). This shows that we have 

T r = i o. 

Now we define a distribution t on the submanifold f2 of r by 

(t,  O ) : =  (to, 0 o T). 

Then it is easily seen that T is the extension of  t, i.e. 

(T,f) = (t, fl~,) for all fEN(O'XR"- '~) .  

In the following we use another chart constructed from the exponential mapping 
of the Lie group G. 

Let ~ be the Lie algebra of G, /~ the Lie algebra of H : = S t a b ~  x0, and let 
be a subspace of ] such that ] = m |  Choose a basis XI . . . . .  Xm of ~ ,  and let 
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be defined by 
t~(sl . . . . .  s,,) := exp ( X  siXi)xo 

on an open neighbourhood ~ of the origin in R m, such that (5, ~) is a chart for f2. 
Since t is a distribution with compact support contained in f2, there is an NEN 

and a constant C>0,  such that 

I(t, 0)1 <= C~'I~I~_N sup [D~(o o ~)(s)[ 
sE~ 

for all 0EN(O). 
We choose a function ~EN(f2'XRn-'~), 4--1 on a neighbourhood of Ux-'---oEE 

in R'. Since suppTcUxo~E, we get: 

I(To~, f ) l  = [(T, fo~)] = I(T, r "fvv)l 

--I(t, (r 

<= CZI,I~_N sup ID~(~f~, o ~ ) ( s ) l .  
s E ~ n s u p p ~  

From this we get, with a new constant C '>O:  

I<T,v,f)l <= C'z~N~_N sup ID~(f~, o~)(s)l. 
s E -O f-I supp  d~ 

Since 
f~o, o ~(s) = f f (g- l (exp  ~ s,X~)Xo)rp~(g)dg 

= f f ( g - ~  xo) % ((exp z~ s, N) g) dg, 
we have 

O~ (f,~ o g') (s) = f f(g-~ Xo) D~ ~o~ ((exp Z s, ~ )  g) dg, 
hence 

[Dff(fq,~ o ~)(s)[ <= sup If(x)l f [Dff q~((exp Z s,X~)g)l dg. 
x E m  

Since the functions s-,-flO~o~ ((exp 2" sgXe)g)l dg are continuous, we finally have 
the estimate 

[(T~,~,f)[ <= Csup[f(x)l <- Clf l~ 
xEo~ 

with a constant C independent of f .  Hence T~0 ~ is a Radon measure. Furthermore 
supp Te c(supp 9~)-l . (supp T ) c P . ( - ~ o n E ) c E  , and thus we have proved that 
To, is contained in B(E). 

. 

In this section we shall prove that each point x0Eo has a local base consisting 
of  compact sets which have the convolution property. 

Let V be a finite dimensional vector space. A closed set K ~  V is said to have 
the restricted cone property at a point yoEK, if there exist a neighbourhood U of 
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Yo in V and a cone P defined by 

P : =  {yEV; (1--x)[yl <- (Y, Yl) <= ~}, 

where 0 < n <  1, ylC V, fYl] = 1, such that y + P = K  for every y E K n  U (see Domar [1]). 
In the next lemma we reformulate the restricted cone property in a form which 

will be more useful in the following: 

Lemma 3. A eompaet set K c V has the restricted cone property at every point 
xEI(., i f  and only i f  there exists a constant C > 0 ,  such that for every vEK there exist 
a neighbourhood U of v in V and a cone P. such that 

d i s t (y+z ,  V ~ K )  ~ CIyl for all yEP, zEU~K.  

Proof Let Px={vEV; (1-x)lv[<=(v, y l ) ~ : } ,  0 < n < l ,  [y l I=l .  For fixed Yl, 
there exists a C , ~ 0 ,  such that dist (y, V \ P ~ ) ~ C ,  lYl for all yEP~I2, as geometrical 
considerations show. 

Now let vEK. There exist a neighbourhood Uv of v in V and a cone P~, de- 

pending on v, such that z + P , = K  for every zEKc~Uv. Then we have 

dist (z + y, V \ K )  ~- dist (z + y, z + V \ P , )  

= dist (y, V \ P ~ )  

C, ly[ 
for every zE Kr~ U~, YE P,/2. 

Using an obvious compactness argument we easily find a C > 0  with C,>=C 
uniformly on K. This proves Lemma 3. 

Now we choose an inner product ( . ,  �9 ) on the Lie algebra ~ of  G. Let 
denote the orthogonal complement of ~ with respect to the chosen inner product. 
Then 

Let rc denote the canonical homomorphism from G onto G/H. 

Proposition 2. I f  K is a compact subset in ~e, which has the restricted cone pro- 
perty at every point zE K with respect to ~ ,  [hen there exists a t0>0, such that 
rc (exp tK) has the convolution property for every 0 < t <= to. 

Proof. We denote by q~ (resp. p,,) the canonical coordinates of the first (resp. 
second) kind, i.e. for X = X I + X ~ ,  X1E~ , X~E~, we have (o l (X)=expX,  r 

exp )(1 exp )(2. 
There is a neighbourhood U of  0Ey, such that cp~, i = l ,  2, maps U homeo- 

morphically onto a neighbourhood of eEG. Also we may assume that n oexpl~, 
maps U c ~  homeomorphically onto an open set in G/H. If U is sufficiently small, 
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by the Campbell--Hausdorff  tbrmula there exists a constant (71>0, such that 

expYexpZ=exp(Y+Z+e(Y,Z)) for all Y,Z~U, 

where ~ is a function from UN U to y, which satisfies the estimate 

I~(Y,z)[ ~ cxlYIIZl, 

Furthermore, by Lemma 3, there exist a constant C>0 ,  bounded open subsets 
Ui, j = l  . . . . .  k, in ~ and cones P ~ c ~ ,  such that 

J 
and 

dist(Y'+Z, ~ \K)  >= C]Y'] for all Y'(P~ 
and ZC U/~K. 

Now we choose r,r'ER, 0 < r ' < r ~ m l n  26C1' 2C1 ' such that Br:= 

/XC~; ]XI<r}~U and ~of~(qh(Br,)3)cBr. Furthermore we fix a t0>0, such that 

to.([,=)Uj)c B, and to.P~c B~,. 
J 

In the following we shall show that rc (exp tK) has the convolution property in 
G/H for every 0 < t < t , .  

Considering tK, tUj instead of K, Uj, we may assume t = l .  We define 
/~:=rc (exp K), Oi:=rc (exp Uj) and, if P ~ = { X E ~ ;  (1 -~ j ) lX l~<X,  Y~><--~'3, let 
Ps.:={XC~,; ( 1 -  xj) IX [ -<_ (X, Yj)-<_~j}, and define Q j : = e x p P  i. Qj is an appro- 
ximation set. 

We shall prove that Q j-Ojr~/~c/~,  from which it follows, that /~ has the 
convolution property. 

For  some YEPj and ZCU~c~K let 

y = expYCQj, i f=  rc(expZ)EOin/~.  

We have Y=R+S for some RC/~ and SE~.  
Obviously S~ P~.. 
We get y~=rc(y.exp Z ) = ~  (exp (R+S) exp Z e x p  (--R)), and 

exp (R+  S) exp Z exp ( - R ) = e x p  (S+Z+~(R+ S, Z)+e(R+ S+Z +e(R+S, Z), 

--R)). Moreover 
exp (R+S) exp Z exp (--R)~gx(B,,) ~ ~ q92(Br), 

that means: there exist V~-,~ and T~/~, such that 

exp (R+S) expZ  exp ( - R )  = exp (S+Z+V) exp T = 

= exp (S+Z+V t-T+~(S+Z+V, T)). 
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From this it follows that 

~(R+s, Z)+~(R+S+Z+~(R+S, Z), -R) = V+T+~(S+V+Z, r ) .  

An easy estimate gives: 

(*) [E(R+S, Z) +e(R+S+Z+e(R+S,  Z), -R)I <= 4C l r  I Y{ 

and 

(**) {~(S+Z+V, T)I <= CI[S+Z+VIIT] ~ CIIS+Z+V+TIIT[ <- ClrIT]. 

We write e(S+Z+ V, T)=e~+~, , ,  e~E/~, a,~E~. Then, using (*) and (**), 

IT[ ~ IT+e~[+le~l -<- IT+V+e(S+Z+V, T)I+Ia(S+Z+V, T)I 

1 ~ 4CxrlYl+ylT{, 
hence ITI<-SClrIYI. 

Thus we get 

[VI -<-- [V+T+e(S+Z+V, T)I+ITI+Ie(S+Z+V, T)I 

<= 4C~r lY l+8GrlY l+GrlY[  

c Ir'l 

J. We may assume that xi<-~ 

Thus we get S+Z+VEK,  since 
This gives the desired result 

for every j. Then [Y[~_} IS[, hence 

3 C lS l .  [ v [ _ ~  

dist ( S+ Z, ~\K)~_CISI .  

YZ = rc(exp (S+Z+V)exp  T) = n(exp (S+Z+V))EK. 

. 

The results of the preceding sections can be applied to the case of closed orbits 
to get the following theorem: 

Theorem 2. I f  mcR" is a closed m-dimensional orbit under a linear action of 
a connected Lie group G, then 

r(a~)t',,/~+l~ = {0}. 
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Proof. F o r  every po in t  xEco there  exists, by P ropos i t ion  2, a c ompa c t  neigh- 

b o u r h o o d  Ux o f  x in co which has  the convo lu t ion  proper ty .  By T h e o r e m  1 we know 
tha t  r(U~)tm/~+lJ= {0}. 

Because co is c losed in R ~, U:, is also a ne ighbou rhood  o f  x in the  t opo logy  

induced by  R" on co. This  shows tha t  r(co)tm/~+11= {0}, since the  n i lpo tency  o f  r(co) 

is a local p rope r ty  as in the  case o f  Wiener  sets (see Rei ter  [9], Chap.  II).  
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