On the synthesis problem for orbits of Lie groups in \mathbb{R}^n

W. Kirsch, D. Müller

0.

The content of this paper is essentially that of our "Diplomarbeit" written at the university of Bielefeld under the guidance of Prof. H. Leptin.

1.

Let $F_1(\mathbf{R}^n)$ be the subalgebra of all functions in $C_{\infty}(\mathbf{R}^n)$, which are Fourier transforms of functions in $L_1(\mathbf{R}^n)$. The elements of the dual $PM(\mathbf{R}^n)$ of $F_1(\mathbf{R}^n)$ are called pseudomeasures. Considered as distributions the pseudomeasures are just the Fourier transforms of essentially bounded measurable functions.

For a closed ideal I in $F_1(\mathbb{R}^n)$ the cospectrum of I is defined as the set of common zeros of the functions in I.

For a closed subset E of \mathbb{R}^n , we denote by j(E) the smallest, by k(E) the biggest closed ideal with cospectrum E.

It is well known that the quotient algebra

$$r(E) := k(E)/j(E)$$

is a radical algebra.

For certain manifolds it has been proved that r(E) is even nilpotent. E is said to be of spectral synthesis if $r(E) = \{0\}$.

So C. Herz [4] showed for the circle S^1 that $r(S^1) = \{0\}$, and Varopoulos [11] proved more generally that for the (n-1)-dimensional sphere S^{n-1} the algebra $r(S^{n-1})$ is nilpotent of degree $\left[\frac{n+1}{2}\right]$. F. Lust [8] discovered that $r(E) = \{0\}$ for each closed orbit of a one-parameter group.

Y. Domar [1] proved that for compact subsets E of (n-1)-dimensional submanifolds of \mathbb{R}^n with non-vanishing curvature the algebra r(E) is nilpotent of degree $\left[\frac{n+1}{2}\right]$ provided that E satisfies a certain technical condition. He also gave an example [2] of a C^{∞} -curve in \mathbb{R}^2 without spectral synthesis, thus showing that the curvature condition is essential. In this paper we investigate orbits in \mathbb{R}^n under the action of a general connected subgroup G of $GL(n, \mathbb{R})$. Among other things we shall prove that if E is a closed orbit of dimension m, then $r(E)^{\left[\frac{m}{2}+1\right]}=\{0\}$. This follows easily from a more general theorem (Theorem 1) about certain compact subsets of a general, not necessarily closed orbit $\omega = Gx_0 = \{gx_0; g \in G\}, x_0 \in \mathbb{R}^n$, of G in \mathbb{R}^n . The result on r(E), E closed, was already conjectured by H. Leptin in [6].

The proof of Theorem 1 follows the line of the proof Domar gave for his main theorem in [1]. We also thank Prof. Domar for his interest and valuable comments on the subjects of this paper.

2.

In the following we denote by G a connected Lie group acting connuously on \mathbb{R}^n by linear transformations.

For $x \in \mathbb{R}^n$ let

$$\omega = Gx$$

be the orbit through x and $H:=H_x$ the stabilizer of x.

Transferring the C^{∞} -structure of G/H to ω via the canonical map ing we consider ω as a regular submanifold of \mathbb{R}^n .

While for closed orbits the topology defined by the C^{∞} -structure is qual to the topology induced by \mathbb{R}^n , this is not true in general. (see Helgason [3], Ch. II, Ex.; Hochschild [5]). Nevertheless both topologies induce the same topology on any compact subset of the manifold ω .

The following definitions carry over the notion of the "restricted cone property" used by Domar in [1] to our situation.

A subset P of G is called an approximation set, if the identity e of G lies in the closure of the interior of P.

A compact subset E of ω is said to have the *convolution property*, if for every $x \in E$ there exist a neighbourhood U_x of x in E and an approximation set P_x , such that $P_x \overline{U}_x \subset E$.

Now we can state our main result:

Theorem 1. If ω is an m-dimensional orbit of G and E a compact subset of ω having the convolution property, then

$$r(E)^{[m/2+1]} = \{0\}.$$

This theorem contains for m=1 the result of F. Lust [8]. Of course for n>1 the degree of nilpotency of r(E) may be smaller than $\left[\frac{m}{2}+1\right]$, e.g. $r(E)=\{0\}$ for every flat orbit E. The determination of the exact degree of nilpotency of r(E) would require a Littman type estimate of the Fourier—Stieltjes transforms of measures supported by E (see Littman [7]).

3.

I. Now we shall prove Theorem 1.

In the following we denote by E a compact subset of ω having the convolution property.

The following definitions are essentially due to Domar [1]:

- 1°. Let B(E) denote the space of all bounded measures on \mathbb{R}^n with support in E. B(E) can be considered as a subspace of $PM(\mathbb{R}^n)$.
- 2°. For every integer $i \ge 1$, let $J_i(E)$ denote the space of all test functions in $\mathcal{D}(\mathbb{R}^n)$, which vanish on E together with all partial derivatives up to the order i-1.
 - 3°. For every integer $i \ge 1$, let $C_i(E)$ denote the annihilator of $J_i(E)$ in $PM(\mathbb{R}^n)$.

The closure of B(E) is just the annihilator of k(E) in $PM(\mathbb{R}^n)$, where the closure is taken in the weak* topology $\sigma(PM(\mathbb{R}^n), F_1(\mathbb{R}^n))$. Obviously we have $J_1(E)^i \subset J_i(E)$, hence $\overline{J_1(E)}^i \subset \overline{J_i(E)}$ for every integer $i \ge 1$.

The following theorem is an easy generalization of Domar's theorem 2.9.4° in [1]:

Theorem 2. Let M be a smooth, m-dimensional submanifold of \mathbb{R}^n and let E be a compact subset of M. Furthermore suppose that $f \in F_1(\mathbb{R}^n)$ has compact support, $T \in PM(\mathbb{R}^n)$ has its support in E and

$$|\hat{T}(x)| = \mathcal{O}(|x|^{\tau})$$
 as $x \to \infty$, where $-\frac{n}{2} < \tau \le 0$. Let

$$|f|_{\varepsilon,\infty} := \sup \{|f(x)|; \operatorname{dist}(x,E) \le 2\varepsilon\}.$$

Then

$$\langle T, f \rangle = \mathcal{O}(\varepsilon^{-\tau - (m/2)} |f|_{\varepsilon, \infty})$$

as $\varepsilon \to 0$.

This result goes back to Beurling, Pollard and Herz. We omit the proof, because the proof given by Domar in [1] can be adopted with only slight changes.

We apply Theorem 2 to functions $f \in J_i(E)$. Using Taylor expansion of f around boundary points of E, we derive easily the estimate

$$|f|_{\varepsilon,\infty}=\mathcal{O}(\varepsilon^i).$$

For $T \in PM(\mathbb{R}^n)$ clearly

$$|\hat{T}(x)| = \mathcal{O}(1)$$
 as $|x| \to \infty$.

Thus Theorem 2 yields

$$\langle T, f \rangle = 0$$

for all $f \in J_{\lfloor m/2+1 \rfloor}(E)$ and $T \in PM(\mathbb{R}^n)$ with supp $T \subset E$.

Consequently, by Hahn-Banach theorem, we have proved

$$\overline{J_{\lceil m/2+1\rceil}(E)}=j(E),$$

because the annihilator of j(E) consists precisely of all pseudomeasures T with supp $T \subset E$.

Remembering that $\overline{J_1(E)}^{[m/2+1]} \subset \overline{J_{[m/2+1]}}$, we have shown:

Corollary 1. $\overline{J_1(E)}^{[m/2+1]} = j(E)$.

To prove $r(E)^{\lfloor m/2+1\rfloor} = \{0\}$, it is now sufficient to show

$$\widehat{J_1(E)} = k(E)$$

or, equivalently,

$$\overline{B(E)} = C_1(E).$$

II. The aim of this section is the proof of the following proposition, which will also finish the proof of Theorem 1:

Proposition 1. If E is a compact subset of ω which has the convolution property, then every $T \in C_1(E)$ is the weak* limit of a sequence $\{T_{\nu}\}_{\nu}$ of measures in B(E).

We shall use the following two lemmas. The first one is a localisation lemma due to Domar.

Lemma 1. Assume that every point $x \in E$ has an open neighbourhood $U_x \subset \mathbb{R}^n$ such that every $T \in C_1(E \cap \overline{U}_x)$ is the weak* limit of a sequence $\{T_v\}_v \subset B(E)$. Then every $S \in C_1(E)$ is the weak* limit of a sequence $\{S_v\}_v$ of measures in B(E).

The proof can be found in Domar [1].

Lemma 2. If E is a compact subset of ω which has the convolution property, then for every $x \in E$ and every neighbourhood V of x in \mathbb{R}^n there exist neighbourhoods V_1 and V_2 of x in \mathbb{R}^n and an approximation set $P \subset G$, such that

$$\overline{V}_1 \subset V_2 \subset \overline{V}_2 \subset V$$
 and $P \cdot (\overline{V}_1 \cap E) \subset V_2 \cap E$.

Proof. There exist an open neighbourhood θ of x in E and an approximation set $P' \subset G$, such that $P' \cdot \overline{\theta} \subset E$. We have $\theta = U \cap E$ for some neighbourhood U of x in \mathbb{R}^n . We choose a neighbourhood V_2' of x in E, such that $V_2' \subset \overline{V_2'} \subset V$, and set $V_2 := U \cap V_2'$, hence $\overline{V_2} \subset \overline{U} \cap \overline{V_2'} \subset V$. There exist a neighbourhood W of e in G and a neighbourhood V_x of x in \mathbb{R}^n , such that $W \cdot V_x \subset V_2$. Choosing a neighbourhood

bourhood V_1 of x in \mathbb{R}^n such that $\overline{V_1} \subset V_x$, we get $\overline{V_1} \subset U$. For $P := P' \cap W$ we easily obtain $P(\overline{V_1} \cap E) \subset V_2 \cap E$.

Let $x_0 \in E$. Lemma 2 allows us to choose suitable neighbourhoods U_{x_0} , V_2 and V of x_0 in \mathbb{R}^n , an approximation set P and an open subset $\Omega \subset \omega$, for which $\Omega \cap E = V \cap E$, such that

$$\overline{U_{x_0}} \subset V_2 \subset \overline{V_2} \subset V$$
, $P \cdot (\overline{U_{x_0}} \cap E) \subset V_2 \cap E$,

and such that Ω is covered both by a chart defined by the exponential mapping and by a chart (Ω', Ψ) , where Ψ is of the form

$$\Psi: x' \to (x', \psi(x')), x' \in \Omega' \subset \mathbb{R}^m, \psi \in C^{\infty}(\Omega', \mathbb{R}^{n-m}).$$

Now, by Lemma 1, it suffices to show that every $T \in C_1(E \cap \overline{U_{x_0}})$ is the weak* limit of a sequence $\{T_v\}_v \subset B(E)$. We shall prove this by using regularisations of pseudomeasures.

The group G acts continuously on $F_1(\mathbf{R}^n)$ by isometries, explicitly

$$f_a(x) := f(g^{-1}x), \text{ if } f \in F_1(\mathbf{R}^n), g \in G, x \in \mathbf{R}^n.$$

Let M(G) denote the algebra of bounded Radon measures on G. For $\mu \in M(G)$, $f \in F_1(\mathbb{R}^n)$ let

$$f_{\mu} := \int_{G} f_{g} d\mu(g).$$

It is clear that $F_1(\mathbb{R}^n)$ may be regarded as a Banach M(G)-module. Choosing a fixed left Haar measure dg on G we identify a function $f \in L^1(G)$ with the measure f dg. We define an action of $\mu \in M(G)$ on $PM(\mathbb{R}^n)$ by

$$\langle T_{\mu}, f \rangle := \langle T, f_{\mu} \rangle$$
 for $T \in PM(\mathbf{R}^n)$, $f \in F_1(\mathbf{R}^n)$.

If μ_{ν} is a sequence of positive measures with total mass one, such that $\mu_{\nu}(\mathbf{f}U) \rightarrow 0$ for every open neighbourhood U of $e \in G$, then

$$T_{\mu_{\nu}} \to T$$
 in the weak* topology for every $T \in PM(\mathbb{R}^n)$.

Now let $T \in C_1(E \cap \overline{U_{x_0}})$, and let P be the approximation set choosen before.

Choose a sequence $\{\varphi_{\nu}\}_{\nu}$ of functions in $\mathcal{D}(G)$ such that

$$\varphi_{\nu} \ge 0$$
, $\int \varphi_{\nu} dg = 1$, supp $\varphi_{\nu} \subset P^{-1}$ for every ν ,

and such that $\int_{\mathbb{Q}U} \varphi_v dg \to 0$ for every open neighbourhood U of $e \in G$. Thus we have $T = \lim_{\varphi_v} T_{\varphi_v}$.

To prove Proposition 1 and hence Theorem 1 it remains to show that $T_{\varphi_{\nu}} \in B(E)$. In the following we restrict our considerations to functions and distributions on $\Omega' \times \mathbb{R}^{n-m}$, because for every $T \in C_1(E \cap \overline{U_{x_0}})$ we have supp $T \subset \Omega' \times \mathbb{R}^{n-m}$ and supp $T_{\varphi_{\nu}} \subset \Omega' \times \mathbb{R}^{n-m}$.

We define a diffeomorphism $T: \Omega' \times \mathbb{R}^{n-m} \to \Omega' \times \mathbb{R}^{n-m}$ by

$$\Gamma(x', x'') := (x', \psi(x') - x'').$$

For $\varphi \in \mathscr{D}(\Omega' \times \mathbb{R}^{n-m})$ we set $\varphi^{\Gamma} := \varphi \circ \Gamma$, and for $S \in \mathscr{D}'(\Omega' \times \mathbb{R}^{n-m})$ we define S^{Γ} by

$$\langle S^{\Gamma}, \varphi \rangle := \langle S, \varphi^{\Gamma} \rangle.$$

Let $T \in C_1(E \cap \overline{U_{x_0}})$; then supp $T^r \subset \Omega' \times \{0\} \subset \Omega \times \mathbb{R}^{n-m}$.

For a multi-index $\alpha \in \mathbb{N}^{n-m}$ we denote by $D_{x''}^{\alpha}$ the partial derivation

$$\frac{\partial^{\alpha_1}}{\partial^{\alpha_1} \chi_1''} \cdots \frac{\partial^{\alpha_{n-m}}}{\partial^{\alpha_{n-m}} \chi_{n-m}''}$$

with respect to the decomposition x=(x',x'') for $x \in \mathbb{R}^n$, $x' \in \mathbb{R}^m$, $x'' \in \mathbb{R}^{n-m}$.

Then it is wellknown (Schwartz [10]) that for some unique distributions $t_{\alpha} \in \mathcal{D}'(\Omega')$ with

 $(\operatorname{supp} t_{\alpha}) \times \{0\} \subset \operatorname{supp} T^{\Gamma} \subset \Psi^{-1}(E \cap \overline{U_{x_0}}) \times \{0\}$ we have

$$T^{\Gamma} = \sum_{|\alpha| \leq p} D_{x''}^{\alpha}(\bar{t}_{\alpha}),$$

where l_{α} denotes the extension of l_{α} onto $\Omega' \times \mathbb{R}^{n-m}$, and p denotes the order of T^{Γ} . Now choose a multi-index $\beta \in \mathbb{N}^{n-m}$, $0 < |\beta| \le p$, and a test function $\xi \in \mathcal{D}(\mathbb{R}^{n-m})$, $\xi \equiv 1$ in a neighbourhood of the origin of \mathbb{R}^{n-m} . For $\varrho \in \mathcal{D}(\Omega')$ we define $\varrho_{\beta} \in \mathcal{D}(\Omega' \times \mathbb{R}^{n-m})$ by

$$\varrho_{\beta}(x',x'') := \xi(x'') \frac{x''^{\beta}}{\beta!} \varrho(x').$$

An easy computation shows that $\langle T, \varrho_{\beta}^{\Gamma} \rangle = \langle t_{\beta}, \varrho \rangle$. But $\varrho_{\beta}^{\Gamma} \in J_{1}(E \cap \overline{U_{x_{0}}})$, hence $\langle T, \varrho_{\beta}^{\Gamma} \rangle = 0$, and thus we have $\langle t_{\beta}, \varrho \rangle = 0$ for all $\varrho \in \mathcal{D}(\Omega')$. This shows that we have

$$T^{\Gamma} = \overline{t}_0$$
.

Now we define a distribution t on the submanifold Ω of ω by

$$\langle t, \varrho \rangle := \langle t_0, \varrho \circ \Psi \rangle.$$

Then it is easily seen that T is the extension of t, i.e.

$$\langle T, f \rangle = \langle t, f |_{\Omega} \rangle$$
 for all $f \in \mathcal{D}(\Omega' \times \mathbb{R}^{n-m})$.

In the following we use another chart constructed from the exponential mapping of the Lie group G.

Let g be the Lie algebra of G, h the Lie algebra of $H := \operatorname{Stab}_G x_0$, and let m be a subspace of g such that $g = m \oplus h$. Choose a basis X_1, \ldots, X_m of m, and let

 $\widetilde{\Psi}$ be defined by

$$\widetilde{\Psi}(s_1, \ldots, s_m) := \exp\left(\sum s_i X_i\right) x_0$$

on an open neighbourhood $\tilde{\Omega}$ of the origin in \mathbb{R}^m , such that $(\tilde{\Omega}, \tilde{\Psi})$ is a chart for Ω . Since t is a distribution with compact support contained in Ω , there is an $N \in \mathbb{N}$

and a constant C>0, such that

$$|\langle t, \varrho \rangle| \leq C \sum_{|\alpha| \leq N} \sup_{s \in \tilde{\Omega}} |D^{\alpha}(\varrho \circ \tilde{\Psi})(s)|$$

for all $\varrho \in \mathcal{D}(\Omega)$.

We choose a function $\xi \in \mathcal{D}(\Omega' \times \mathbf{R}^{n-m})$, $\xi \equiv 1$ on a neighbourhood of $\overline{U_{x_0}} \in E$ in \mathbf{R}^n . Since supp $T \subset \overline{U_{x_0}} \cap E$, we get:

$$\begin{split} &|\langle T_{\varphi_{\nu}}, f \rangle| = |\langle T, f_{\varphi_{\nu}} \rangle| = |\langle T, \xi \cdot f_{\varphi_{\nu}} \rangle| \\ &= |\langle t, (\xi \cdot f_{\varphi_{\nu}})|_{\Omega} \rangle| \\ &\leq C \sum_{|\alpha| \leq N} \sup_{s \in \widetilde{\Omega} \cap \text{supp } \xi} |D^{\alpha}(\xi f_{\varphi_{\nu}} \circ \widetilde{\Psi})(s)|. \end{split}$$

From this we get, with a new constant C'>0:

$$|\langle T_{\varphi_{\nu}}, f \rangle| \leq C' \sum_{|\alpha| \leq N} \sup_{s \in \Omega \cap \text{supp } \xi} |D^{\alpha}(f_{\varphi_{\nu}} \circ \widetilde{\Psi})(s)|.$$

Since

$$\begin{split} f_{\varphi_{\nu}} \circ \widetilde{\Psi}(s) &= \int f \big(g^{-1}(\exp \sum s_i X_i) x_0 \big) \varphi_{\nu}(g) \, dg \\ &= \int f \big(g^{-1} x_0 \big) \varphi_{\nu} \big((\exp \sum s_i X_i) g \big) \, dg, \end{split}$$

we have

$$D_s^{\beta}(f_{\varphi_{\nu}}\circ\widetilde{\Psi})(s) = \int f(g^{-1}x_0)D_s^{\beta}\varphi_{\nu}((\exp\sum s_iX_i)g)dg,$$

hence

$$|D_s^{\beta}(f_{\varphi_{\mathbf{v}}}\circ \widetilde{\Psi})(s)| \leq \sup_{\mathbf{x}\in \omega} |f(\mathbf{x})| \int |D_s^{\beta}\varphi_{\mathbf{v}}((\exp \sum s_i X_i)g)| dg.$$

Since the functions $s \to \int |D_s^{\beta} \varphi_v| (\exp \sum s_i X_i) g) |dg|$ are continuous, we finally have the estimate

$$|\langle T_{\varphi_{\nu}}, f \rangle| \le C \sup_{x \in \omega} |f(x)| \le C |f|_{\infty}$$

with a constant C independent of f. Hence $T_{\varphi_{\nu}}$ is a Radon measure. Furthermore supp $T_{\varphi_{\nu}} \subset (\text{supp } \varphi_{\nu})^{-1} \cdot (\text{supp } T) \subset P \cdot (\overline{U_{x_0}} \cap E) \subset E$, and thus we have proved that $T_{\varphi_{\nu}}$ is contained in B(E).

4.

In this section we shall prove that each point $x_0 \in \omega$ has a local base consisting of compact sets which have the convolution property.

Let V be a finite dimensional vector space. A closed set $K \subset V$ is said to have the restricted cone property at a point $y_0 \in K$, if there exist a neighbourhood U of

 y_0 in V and a cone P defined by

$$P := \{ y \in V; \ (1 - \varkappa) \, |y| \le \langle y, y_1 \rangle \le \varkappa \},$$

where $0 < \varkappa < 1$, $y_1 \in V$, $|y_1| = 1$, such that $y + P \subset K$ for every $y \in \overline{K \cap U}$ (see Domar [1]).

In the next lemma we reformulate the restricted cone property in a form which will be more useful in the following:

Lemma 3. A compact set $K \subset V$ has the restricted cone property at every point $x \in K$, if and only if there exists a constant C > 0, such that for every $v \in K$ there exist a neighbourhood U of v in V and a cone P, such that

$$\operatorname{dist}(y+z,V\setminus K) \ge C|y|$$
 for all $y\in P, z\in \overline{U\cap K}$.

Proof. Let $P_{\kappa} = \{v \in V; (1-\kappa) | v| \leq \langle v, y_1 \rangle \leq \kappa \}$, $0 < \kappa < 1, |y_1| = 1$. For fixed y_1 , there exists a $C_{\kappa} > 0$, such that dist $(y, V \setminus P_{\kappa}) \geq C_{\kappa} |y|$ for all $y \in P_{\kappa/2}$, as geometrical considerations show.

Now let $v \in K$. There exist a neighbourhood U_v of v in V and a cone P_{\varkappa} , depending on v, such that $z + P_{\varkappa} \subset K$ for every $z \in \widetilde{K \cap U_v}$. Then we have

$$\operatorname{dist}(z+y, V \setminus K) \ge \operatorname{dist}(z+y, z+V \setminus P_{\varkappa})$$

$$= \operatorname{dist}(y, V \setminus P_{\varkappa})$$

$$\ge C_{\varkappa}|y|$$

for every $z \in \overline{K \cap U_v}$, $y \in P_{\varkappa/2}$.

Using an obvious compactness argument we easily find a C>0 with $C_{\kappa} \ge C$ uniformly on K. This proves Lemma 3.

Now we choose an inner product $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G. Let m denote the orthogonal complement of k with respect to the chosen inner product. Then

$$g = h \oplus m$$
.

Let π denote the canonical homomorphism from G onto G/H.

Proposition 2. If K is a compact subset in m, which has the restricted cone property at every point $z \in K$ with respect to m, then there exists a $t_0 > 0$, such that π (exp tK) has the convolution property for every $0 < t \le t_0$.

Proof. We denote by φ_1 (resp. φ_2) the canonical coordinates of the first (resp. second) kind, i.e. for $X=X_1+X_2$, $X_1\in \mathbb{A}$, $X_2\in \mathbb{M}$, we have $\varphi_1(X)=\exp X$, $\varphi_2(X)=\exp X_1\exp X_2$.

There is a neighbourhood U of $0 \in \mathcal{G}$, such that φ_i , i=1, 2, maps U homeomorphically onto a neighbourhood of $e \in G$. Also we may assume that $\pi \circ \exp|_{\mathfrak{M}}$ maps $U \cap \mathfrak{M}$ homeomorphically onto an open set in G/H. If U is sufficiently small,

by the Campbell—Hausdorff formula there exists a constant $C_1 > 0$, such that

$$\exp Y \exp Z = \exp (Y + Z + \varepsilon(Y, Z))$$
 for all $Y, Z \in U$,

where ε is a function from $U \times U$ to φ , which satisfies the estimate

$$|\varepsilon(Y,Z)| \leq C_1|Y||Z|.$$

Furthermore, by Lemma 3, there exist a constant C>0, bounded open subsets U_j , $j=1,\ldots,k$, in m and cones $P_j'\subset m$, such that

$$K \subset \bigcup_{j} U_{j}, \quad P'_{j} + \overline{U_{j} \cap K} \subset K,$$

and

$$\operatorname{dist}(Y'+Z, m\backslash K) \ge C|Y'|$$
 for all $Y' \in P'_i$

and $Z \in U_i \cap K$.

Now we choose $r, r' \in \mathbb{R}$, $0 < r' < r \le \min\left\{\frac{C}{26C_1}, \frac{1}{2C_1}\right\}$, such that $B_r := \{X \in \mathcal{G}; |X| < r\} \subset U \text{ and } \varphi_2^{-1}(\varphi_1(B_{r'})^3) \subset B_r$. Furthermore we fix a $t_0 > 0$, such that $t_0 \cdot (\bigcup_j U_j) \subset B_r$ and $t_0 \cdot P_j' \subset B_{r'}$.

In the following we shall show that π (exp tK) has the convolution property in G/H for every $0 < t < t_0$.

Considering tK, tU_j instead of K, U_j , we may assume t=1. We define $\tilde{K}:=\pi$ (exp K), $\tilde{U}_j:=\pi$ (exp U_j) and, if $P'_j=\{X\in_{\mathcal{M}};\; (1-\varkappa_j)|X|\leq \langle X,\,Y_j\rangle\leq \varkappa_j\}$, let $P_j:=\{X\in_{\mathcal{G}};\; (1-\varkappa_j)|X|\leq \langle X,\,Y_j\rangle\leq \varkappa_j\}$, and define $Q_j:=\exp P_j$. Q_j is an approximation set.

We shall prove that $Q_j \cdot \overline{\widetilde{U}_j \cap \widetilde{K}} \subset \widetilde{K}$, from which it follows, that \widetilde{K} has the convolution property.

For some $Y \in P_i$ and $Z \in \overline{U_i \cap K}$ let

$$y = \exp Y \in Q_j, \quad \tilde{z} = \pi(\exp Z) \in \overline{\tilde{U}_j \cap \tilde{K}}.$$

We have Y=R+S for some $R \in h$ and $S \in m$.

Obviously $S \in P'_j$.

We get $y\tilde{z} = \pi(y \cdot \exp Z) = \pi(\exp(R+S) \exp Z \exp(-R))$, and

 $\exp(R+S)\exp Z\exp(-R)=\exp(S+Z+\varepsilon(R+S,Z)+\varepsilon(R+S+Z+\varepsilon(R+S,Z),$

-R). Moreover

$$\exp(R+S) \exp Z \exp(-R) \in \varphi_1(B_{r'})^3 \subset \varphi_2(B_r),$$

that means: there exist $V \in m$ and $T \in h$, such that

$$\exp(R+S) \exp Z \exp(-R) = \exp(S+Z+V) \exp T =$$

$$= \exp(S+Z+V+T+\varepsilon(S+Z+V,T)).$$

From this it follows that

$$\varepsilon(R+S,Z)+\varepsilon(R+S+Z+\varepsilon(R+S,Z),-R)=V+T+\varepsilon(S+V+Z,T).$$

An easy estimate gives:

(*)
$$|\varepsilon(R+S,Z)+\varepsilon(R+S+Z+\varepsilon(R+S,Z),-R)| \leq 4C_1r|Y|$$
 and

We write $\varepsilon(S+Z+V,T)=\varepsilon_{\hbar}+\varepsilon_{m}$, $\varepsilon_{\hbar}\in\hbar$, $\varepsilon_{m}\in\mathbb{M}$. Then, using (*) and (**),

$$|T| \leq |T + \varepsilon_{k}| + |\varepsilon_{k}| \leq |T + V + \varepsilon(S + Z + V, T)| + |\varepsilon(S + Z + V, T)|$$
$$\leq 4C_{1}r|Y| + \frac{1}{2}|T|,$$

hence $|T| \leq 8C_1 r |Y|$.

Thus we get

$$|V| \le |V+T+\varepsilon(S+Z+V,T)|+|T|+|\varepsilon(S+Z+V,T)|$$

$$\le 4C_1r|Y|+8C_1r|Y|+C_1r|Y|$$

$$\le \frac{C}{2}|Y|.$$

We may assume that $\varkappa_j < \frac{1}{3}$ for every j. Then $|Y| \le \frac{3}{2} |S|$, hence

$$|V| \leq \frac{3}{4} C|S|.$$

Thus we get $S+Z+V\in K$, since dist $(S+Z, m\setminus K) \ge C|S|$. This gives the desired result

$$Y\widetilde{Z} = \pi(\exp(S+Z+V)\exp T) = \pi(\exp(S+Z+V))\in \widetilde{K}.$$

5.

The results of the preceding sections can be applied to the case of closed orbits to get the following theorem:

Theorem 2. If $\omega \subset \mathbb{R}^n$ is a closed m-dimensional orbit under a linear action of a connected Lie group G, then

$$r(\omega)^{[m/2+1]} = \{0\}.$$

Proof. For every point $x \in \omega$ there exists, by Proposition 2, a compact neighbourhood U_x of x in ω which has the convolution property. By Theorem 1 we know that $r(U_x)^{\lfloor m/2+1\rfloor} = \{0\}$.

Because ω is closed in \mathbb{R}^n , U_x is also a neighbourhood of x in the topology induced by \mathbb{R}^n on ω . This shows that $r(\omega)^{[m/2+1]} = \{0\}$, since the nilpotency of $r(\omega)$ is a local property as in the case of Wiener sets (see Reiter [9], Chap. II).

References

- 1. Domar, Y., On the spectral synthesis problem for (n-1)-dimensional subsets of \mathbb{R}^n . Ark. Mat. 9 (1971), 23—37.
- 2. Domar, Y., A C^{∞} -curve of spectral non-synthesis. Mathematika 24 (1977), 189—192.
- 3. HELGASON, S., Differential Geometry and Symmetric Spaces. New York, 1962.
- 4. HERZ, C. S., Spectral synthesis for the circle. Ann. of Math. 68 (1958), 709-712.
- 5. Hochschild, G., The structure of Lie groups. San Francisco, 1965.
- LEPTIN, H., Lokalkompakte Gruppen mit symmetrischen Algebren. Symposia Math. 22 (1977), 267—281.
- 7. LITTMAN, W., Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc. 69 (1963), 766—770.
- 8. Lust, F., Le probleme de la synthese et de la *p*-finesse pour certain orbites des groupes lineares dans $A_p(\mathbb{R}^n)$. Studia Math. 39 (1971), 17—28.
- 9. Reiter, H., Classical harmonic analysis and locally compact groups. Oxford, 1968.
- 10. Schwartz, L., Theorie des distributions. Paris, 1966.
- VAROPOULOS, N. TH., Spectral synthesis on spheres. Proc. Cambridge Phil. Soc. 62 (1966), 379—387.

Received November 9, 1979

W. Kirsch Fakultät für Mathematik Ruhr-Universität Bochum 4630 Bochum W. Germany

D. Müller Universität Bielefeld Fakultät für Mathematik 48 Bielefeld Postfach 8640 W. Germany