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1. Introduction 

As far back as 1911 Levi [15] posed the problem whether every pseudoconvex 
domain in C ~ is the domain of  existence of  a holomorphic function. In 1942 Oka 
[22] solved the problem for n = 2  and it was only in 1953--1954 that Oka [23], 
Bremermann [2] and Norguet [18] independently solved the problem for every n. 

Since its solution, new versions of  the Levi problem have naturally arisen. 
During the last decade an infinite dimensional version has attracted the attention 
of  several mathematicians and is perhaps the most studied problem in infinite dimen- 
sional holomorphy. Significant results in this direction were obtained in 1972 by 
Gruman [10] and Gruman---Kiselman [I 1], who solved the Levi problem in Banach 
spaces with a Schauder basis. Afterwards these results have been generalized to 
Fr6chet spaces, and to other classes of  locally convex spaces, like e.g. Silva spaces, 
but always under the assumption that the space has a Schauder basis, or, in the 
case of  Fr6chet spaces, under the weaker assumption that the space has the Banach 
approximation property (i.e. there exists a sequence of  continuous linear operators 
of  finite rank which converges to the identity pointwise). See Noverraz [19], [21], 
Pomes [24], Dineen [4], Schottenloher [26] and Dineen Noverraz--Schottenloher 
[5]. On the other hand, it soon became clear, after a counterexample of Josefson [14], 
that a separability condition on the space is essential. 

In this paper we solve the Levi problem on a class of  spaces that includes all 
nuclear Silva spaces (i.e. strong duals of  nuclear Fr~chet spaces), without assuming 
the existence of  a Schauder basis. This probIem had been explicitly mentioned by 
Boland [1]. Our method is largely based on Gruman and Kiselman's original idea 
and actually the nuclear structure of the space plays the role of the Schauder basis. 

* This work was done when the first author was a guest at the Universidade Estadual de 
Campinas during the European Summer of 1978. His visit was financed by Funda95o de Amparo 
Pesquisa do Estado de S~o Paulo (FAPESP) and Financiadora de Estudos e Projetos (FINEP). 
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We refer to Noverraz [19] for the theory of  holomorphic functions on infinite 
dimensional spaces, and to Schaefer [25] for the theory of topological vector spaces. 

Let us mention that' among the references at the end of this article we have 
not included those papers dealing with that special case of the Levi problem where 
the domain is assumed to be finitely Runge. 

The authors would like to thank M~trio C. Matos for interesting discussions 
and useful suggestions that have helped to improve this paper at various points. 

2. Statement of the theorem 

Let us consider the following conditions on a complex Hausdorff locally con- 
vex space E. 

(i) The space E is nuclear. 
(ii) Given a sequence of  0-neighbourhoods (W j)there exists a sequence of  

scalars 0,j), with 2j>-O, such that c ~  Wj is again a 0-neighbourhood. 
(iii) The space E is hereditarily Lindel6f. 
(iv) The space E is hereditarily separable. 
Of course (iii) (respectively (iv)) means that every subset of  E is a Lindel6f 

topological space (respectively a separable topological space) under the induced 
topology. 

If  U is an open set in E then ~Vf(U) will denote the space of  all holomorphic 
functions on U. 

Theorem 2.1. Let E be a space satisfying conditions (i) through (iv). Then every 
pseudoconvex domain in E is the domain of existence of a holomorphic function. 

Remark 2.2. Let E be a space satisfying conditions (i) through (iii). Then a 
slight modification of the proof  of Theorem 2.1 shows that every pseudoconvex 
domain U in E is a domain of holomorphy. Furthermore, for each finite dimen- 
sional vector subspace S of  E, the restriction mapping ~ r  S) is sur- 
jective. 

Remark 2.3. Let E be a space satisfying conditions (ii) and (iii). Then an adapta- 
tion of  the first part of  the proof  of  Theorem 2.1 shows that every open set U in E 
is uniformly open and that every function fEnnel(U) is uniformly holomorphic in 
the sense of Nachbin [17], i.e. there exists a continuous seminorm e on E such that 
U is open in the seminormed space (E, e) and f is holomorphic on U when U is 
regarded as an open set in (E, ~). 
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3. Examples and applications 

Every DF-space satisfies condition (ii): see Grothendieck [8, p. 64, Lemma 2]. 
on the other hand every Suslin space satisfies conditions (iii) and (iv): see Schwartz 
[27, Ch. II]. We recall that a Polish space is a separable complete metric space, and 
that a Suslin space is a Hausdorfftopological space which is the continuous image of  
a Polish space. Thus we get 

Example 3.1. The strong dual of a Fr6chet--Montel  space and any countable 
inductive limit of  separable Banach spaces are both DF-spaces and Suslin spaces, 
and hence satisfy conditions (ii), (iii) and (iv). As a consequence we get 

Example 3.2. Every nuclear Silva space satisfies conditions (i) through (iv). 
The space of  holomorphic germs 9~'(K), with K c C  n compact, and the spaces of 
distributions ~ ' (K) ,  g'(f2) and 5V'(R"), with K c R n  compact and f2 cR"  open, 
are examples of  nuclear Silva spaces: see Grothendieck [9, Ch. II, pp. 55--57]. 

Remark 3.3. E. Dubinsky, H. Jarchow, B. Perrot and F. Villamarin have kindly 
pointed out to us that there are examples of  nuclear Silva spaces without a Schauder 
basis. Indeed Mitiagin--Zobin [16] have constructed an example of  a nuclear Fr6chet 
space without a Schauder basis and it is easy to see that a nuclear Fr6chet space 
has a Schauder basis if and only if its strong dual has one: if (ei) is a Schauder basis 
in one of  these spaces, then it follows from the Banach--Steinhaus theorem that 
the biorthogonal sequence (f~) (i.e. defined by fi(ei)=6~j) is a Schauder basis in 
its strong dual. Moreover, a similar procedure yields an example of  a nuclear Silva 
space without the Banach approximation property, for Dubinsky [6] has recently 
constructed an example of  a nuclear Fr6chet space without the Banach approxima- 
tion property. 

Example 3.4. It is clear that if a space E satisfies any of the conditions (i), (ii), 
(iii) or (iv) then every vector subspace of E satisfies the same condition. In par- 
ticular every vector subspace of  a nuclear Silva space satisfies conditions (i) 
through (iv). 

Example 3.5. A sequence (x j) in a Banach space is said to be rapidly decreasing 
if for every nCN, j"[lxj][ ~0 as j ~ .  Let E be a separable Banach space, let E" 
denote its strong dual, and let E s denote the vector space E endowed with the 
topology of  uniform convergence on the rapidly decreasing sequences of  E' .  
Then E~ satisfies conditions (i) through (iv). Indeed, by Hogbe-Nlend [12, Prop. 
4.7] Es is nuclear. By Colombeau [3, Lemma 1] E~ satisfies condition (ii). And since 
the identity mapping E~Es is continuous, we see that E~ satisfies conditions (iii) 
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and (iv). We remark finally that by Colombeau [3, Lemma 2] E s is not a Silva space 
when E is infinite dimensional. 

AppBcation 3.6. Every pseudoconvex domain in the space of distributions 
N'(Q), with f2cR"  open, is the domain of existence of a holomorphic function. 
Indeed by Dineen [4, Ex. 2.9] N'(f2) is the open surjective limit of the spaces N'(K), 
with Kc~2 compact. Since Theorem2.1 applies to each ~ ' (K),  by Example 3.2, 
the conclusion follows from Dineen [4, Prop. 4.5]. 

4. Proof  of  the theorem 

A slight modification of the proof of the Cartan--Thullen Theorem (see 
Grauert--Frizsche [7, pp. 47150]) yields the following lemma. 

Lemma 4.1. Let U be a holomorphically convex open set in C". Then given a 

function gEar'(U), a compact set K c  U and e>0,  there exists a function fE~~ 
of  the form f = g +  xnh, where hEJ/g(U) and x,  denotes the n-th complex coordinate, 

and such that: 

(a) supK tf -g l<~.  
(b) I f  V is any convex open set in C" such that V n O U r  then f is unbounded 

on each connected component o f  Vc~ U. In particular, U is the natural do- 

main o f f .  

Let H be a separable inner-product space and let (e,) be a complete ortho- 
normal sequence in H. Let H,  denote the vector subspace spanned by ea . . . . .  e, 
and let n,:  H ~ H , ,  denote the projection. I f  U is a fixed open set in H then we set 

{ , } > -< d(x, 1 K, = x E U n H , :  Ilxtl <= n, d(x,  CU) = n '  [Ix-zrn-l(x)ll = 2- CU) 

Then K, is a compact subset of U n H ,  and z~,_l(K,)c U n  H,_I .  I f  K is any com- 
pact subset of U then ~, (K) c K, for all sufficiently large n. Finally, if U is pseudo- 
convex then it follows from H6rmander [13, Th. 4.3.2] that K, is Runge in U n  H,.  
With this notation we get the lemma below, which is nothing but Gruman--Kisel- 
man [11, Lemma] and Noverraz [20, Prop. 2], slightly strengthtened with the help 
of Lemma 4.1. 

Lemma 4.2. Let U be a pseudoconvex open set in a separable inner-product space 

H. Then there exists a sequence ( f , ) ,  with f , E ; g f ( U n H , ) ,  with the following prop- 

erties: 
(a) LIun 1~,_~ =L-1 
(b) supK. IL-f~_aorc,,_ll-<_2-" 
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(c) I f  V is any convex open set in H, such that V n O ( U n H , ) # O  then f ,  is 
unbounded on each connected component of V n U n H,. In particular U A H, 
is the natural domain of f , .  

(d) The sequence ( f ,  orc,) converges uniformly on compact subsets of U to a 
function fE~f~(U). Moreover f l U n H , = f ,  for every n. 

Proof of Theorem 2.1. We first show the existence of a continuous seminorm 
c~ on E such that: 

(a) U is 0c-open. 
(b) H=(E, ~)/~-~(0) is a separable inner-product space. 
By condition (iii) U is a Lindel6f space, and hence we may find a sequence 

(x ] ) c  U and a sequence (Wj) of convex, balanced 0-neighbourhoods such that 

~o 

v = U (x] +w]) 
j = l  

By condition (ii) there exists a sequence 

and x]+ 2W] c U 

()u), with 2]>0,  such that n 2 j  Wj is again 
a 0-neighbourhood. Since E is nuclear, we may find a convex, balanced 0-neigh- 
bourhood W c  n 2 1 W  j such that H=(E, ~)/~-1(0) is a separable inner-product 
space, where ~ denotes the Minkowski functional of W: see Schaefer [25, p. 101, 
Prop. 7.3]. Since 

U= 0 (xj+Wj) and x j + W i + 2 j - l W c U  
j=l 

we see that U is o~-open, and so (a) and (b) are verified. On the other hand, by con- 
dition (iv) we may find countable dense sets D i c  U and D2~CU. 

Let us assume, for the moment, that E has a continuous norm. Then we may 
assume that ~ is a norm. Then H =  (E, ~) and U is open in H. After applying the 
Grahm--Schmidt  orthogonalization process to D1 u D~ we may find a complete 
orthonormal sequence (e.) in H such that D l u  D z c  u H,,. Let f E g ( U n )  denote 
the function given by Lemma 4.2, where U n denotes the set U regarded as an open 
set in H. Then certainly fE~Vg(U) also. We claim that if V is any convex open set 
in E such that VnOU# 0 then f is unbounded on each connected component of 
V n  U. In particular, U is the domain of  existence o f f  Indeed the convex set V 
contains points both from D 1 and D2 and since D1 u D 2 c  u H,  we get that 
(V n H,) n 0 (U n H,) # O for all sufficiently large n. Then by Lemma 4.2fis  unbounded 
on each connected component of Vc~ U n H . .  Let ~o be any connected component 
of Vc~ U. Then each connected component of  ~on H n is a connected component 
of Vc~ UtaH,. Hencef is  unbounded on o)c~H,, hence on 09. 

The general case may be reduced to the case where E has a continuous norm 
by applying the preceding argument to the quotient space E / ~ - I ( 0 ) .  Indeed, let 
a: E~E/a-I(O) denote the quotient mapping. Then by Noverraz [19, p. 43, 
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Th. 2.1.7] U = a - l ( a ( U ) )  and  a(U)  is a pseudoconvex doma in  in E/~- I (0) .  I t  is also 

clear that  a(DO and  a(D~) are countable  dense subsets of a(U)  and  Ca(U) respec- 

tively. Then  the preceding a rgument  applied to E/cz-a(0) shows that  tr(U) is the 

domain  of existence of a funct ion  g~af ' (a(U)) .  Then  the proof  of Dineen  [4, Prop. 

4.3] shows that  U is the domain  of existence of f = g o a .  

M. Schottenloher  has kindly  informed us that  he already knew the main  result 

in  this paper,  namely  Theorem 2.1 in  the case where E is a nuclear  Silva space, bu t  

he never publ ished the result. He says that  the result can be derived f rom his abstract  

theorem [26. Th. 3.1] if one knows that  every open  set in a Silva space is un i fo rmly  

open. 
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