Examples of .£; spaces*

W. B. Johnson** and J. Lindenstrauss***

In this note we present a class of new examples of simple but interesting .%;
spaces. Let us first recall the definition of %, spaces. A Banach space X is said to
be an Z, , space for some A=1 if for every finite-dimensional subspace B of X
there is a finite-dimensional subspace C of X containing B so that d(C,I)=1
where n=dim C (d(U, V) denotes the Banach—Mazur distance between U and V.
See [6] for details and also for the basic facts concerning %, , spaces, l=p=c).
A Banach space is said to be an & space if it is an &, , space for some A<eo. It
is known (cf. [6]) that X is an %, , |, space for every ¢=>0 if and only if X is isometric
to the space L,(p) for some measure u. Consequently, there are up to isomorphism
only two examples of separable infinite-dimensional spaces which are %, , , , spaces
for every &=0, namely [, and L,(0, 1). (Up to isometry there are countably many
such spaces, according to the number of atoms of u.) It is also known that there
are % spaces which are not isomorphic to L, (u) spaces. In [4] a sequence of mutually
non-isomorphic separable infinite-dimensional %, spaces was constructed. It was
not known however, till now whether there exist uncountably many different spaces
of this type, or even if there are for a given A< oo, infinitely many mutually non-
isomorphic separable and infinite-dimensional <, ; spaces. The examples presented
here solve these problems. They also provide the first examples of separable %,
spaces which on the one hand do not embed in /; and on the other hand do not
contain isomorphic copies of L,(0, 1).

Our construction here was motivated by a paper of McCartney and O’Brien
[7]. In this paper the authors produced an example of a separable space which has
the Radon—Nikodym property (R. N. property in short, see [2] for a detailed dis-
cussion of this property) but which does not embed into a separable conjugate space.
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We noticed that a modification (and simplification) of the construction in [7] yields
%, spaces. The %, spaces we obtain also have the R. N. property without being
subspaces of separable conjugate spaces (such examples were constructed independ-
ently of [7] and at about the same time also by Bourgain and Delbaen [1]. The exam-
ples in [1] are &£ spaces).

The basic building blocks of our examples are the following spaces. Let 0<a~<1
and let 7 be a quotient map from /, onto L,(0, 1). Let X, be the graph of «~17T;
ie., the subspace {(ax, Tx), x€L} of (L,@®L,(0,1)),. The space X, depends of
course also on the special choice of 7. We did not indicate T explicitly in the nota-
tion of X, since the special form of T will be of no importance in the sequel. More-
over, from the isomorphic point of view X, does not really depend on T. It was
proved in [5] that there is an absolute constant K so that if T, and T, are both quotient
maps from /; onto L, (0, 1) then there is an automorphism 7 of /; with {zf], [t 7Y=K
and Ty=T,7. The map ¢: X, (T1)—~X, (T,) defined by ’

o(ax, Tyx) = (atx, Ty1x)

is thus an isomorphism with |g|, e~ =K.
We exhibit next some simple properties of the spaces X, .

Proposition 1. a) There is a constant A (independent of o and T) so that each
X, is an &, , space.

b) d(X,, H)y=1+a)/a for every o=0.

¢) For every subspace Z of I, and every 0=0, d(X,, Z)=1/2a(1+x).

Proof. a) The annihilator X; of X, in (/,®L.(0, 1)), consists of all the
vectors of the form (—a™*7T*y* y*) with y*¢L_(0, 1). Since T* is an isometry
it follows that X! is isometric to L_(0, 1). Since L_(0, 1) is an injective space
(i.., a Py space) there is a projection of norm 1 from (I.&L_(0, 1)),. onto Xi.
Consequently, there is a projection of norm =2 from (I, @ L_(0,1))% (which is
an L,(u) space for some u) onto X;-+ (which is isometric to X**). The desired result
follows now from [6, Theorem I1.5.7.]. It can be easily checked from the proof of
that theorem that one can take as 1 any constant larger than 10. (If one takes as T
the “most natural” quotient map; i.e., the operator which maps the unit vectors
gnyyy 0=i<l", n=0,1,2,... of L, to the vectors 2"yu, . ;iqye-n Of Ly(0, 1)
then a simple direct argument shows that X is an %, ,,, space for every £>0.)

Assertion b) follows by considering the isomorphism x-—(xx, 7x) from /, onto
X,. In order to verify assertion c) we note first that if {u,} , is a sequence in the
unit ball of L=c¢§ so that |u,—u,|=2y for some y=>0 and every n>m, then
every w* limit point u of {u,};> , satisfies {u|=1—y. Moreover, for every &>0,
there is a sequence {m};~, of integers so that u, =u+y,+w, with the {3},
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having mutually disjoint supports and 2, |lw,[l<e. In particular

| 2 A g =t || = 2 — ) I 1]

for every choice of scalars {4,};~,.

Let now r,(t)=sign sin 2"nt, n=1, 2, ... be the Rademacher functions on [0, 1].
Let x,6/, be such that Tx,=r, with |[x,]|—1 as n—>< and consider the vectors
v,=(ax,, r,)€X,. Then clearly l|v,[|=1+a+0(1) and |jv,—v,|=1 for every n=m.
Since (by Khintchine’s inequality) the sequence {r,}:~; in L,(0,1) is equiv-
alent to the unit vector basis in /, it follows that if {n};>, and g are such that
o1 My, =0, =0 i, 4] for every choice of scalars {Z};,, then nec-
essarily ¢=20. Assertion c) is an immediate consequence of this fact and the pre-
ceding observation. J

As an easy consequence of Proposition 1 we get

Theorem 1. Let 1=a,>o,>... be a sequence decreasing to 0 and let
Y=Y({o, ?=1):(2:11@Xa,)1- Then

(1) Y is an &, space.

(ii) Y has the Radon—Nikodym property.

(iii) Y has the Schur property (i.e., a sequence in Y tends w to O only if it tends

in norm to 0).
(iv) Y is not isomorphic to a subspace of I;.
(v) Y is not isomorphic to a subspace of a separable conjugate space.

Proof. Part (i) follows from Proposition 1a. Parts (ii) and (iii) follow from Prop-
osition 1b and the easy and well-known fact that if {Z }>> ; all have the R. N. property
(resp. the Schur property) then the same is true for (372 ,0Z,),. Part (iv) follows
from Proposition lc. Finally Part (v) is a consequence of (1), and (iv) in view of a
result of Lewis and Stegall [3] which asserts that an %, space which embeds in a
separable conjugate space already embeds in /;. J]

We are going to prove next that by taking different sequences {o,};=, in Theo-
rem 1 we can obtain 2% many different isomorphism types among the spaces
Y({o;};2,). This is essentially a consequence of the fact that if O<f<oa with f
much smaller than o, then it is impossible to embed X, in X, in such a way that
there is a projection from X, onto the image of X, whose norm is substantially smaller
than a1 A precise statement of this fact in a somewhat stronger form is the content
of the following proposition.

Proposition 2, Ler 0<f<a=1, let S be an operator of norm =f from I,
into itself with ker S={0} and let T: L,~L,(0,1) be a quotient map. Let Z be the
subspace {(Sx, Tx); x€h} of (L®L,(0,1)),. Then for every pair of operators
U: X,~Z, V:Z~X, such that VU=identity of X,, we have [U||V|=
/(208 + 5002).
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(Note that the same operator T is used in the definition of Z and X,. This is
done just for notational convenience and is of no significance in the proof.)

Proof. We assume, as we clearly may, that |[V|=1. Let {r,};., be the Rade-
macher functions in L, (0, 1) and let {x,}>_, be elements of norm =2 in /; so that
Tx,=r, for every n. Let {u,};> , be defined by the relation

Ulax,, T'x,) = (Su,, Tu,).

As in the proof of Proposition 1c, we can find a sequence of integers {n,};~, and a
constant o so that if v,=u, —u,  then | Sy =20 foreverykand || 3, 4,5, =

Nop+1
6 Doy |4| for every choice of scalars {A)izy. Putting y,=x, —x, ., we have
O (x> Tyi) = V(Svy, Tvy).

Note that [|Ty,||=1 for every k (for future reference, note also that ||Ty,— Tyl =1
for every k#h). Also we have that || 57_, Ty,[[=0(Vn). Hence

no = ”ZI:I=1SUI‘“ = ”(2;;1 Svk’ 2::1 Tvk)” =
= Ul Sz Il + 1| Sy Toel)) = 101 (4na+0(/m)

consequently, e=4|Ulla, ie.
@) 1Sl = 8IUfa k=1,2, ...

The sequence {Iv,};~,, as any bounded sequence in L,(0, 1), can be represented
(after passing to a subsequence if necessary) as

Tvk :fk+hk k=l,2,

where {1, };>, is equi-integrable and even weakly convergent in L, (0, 1), the {4, };>,
have disjoint supports and |k |A|fi]=0 for every k. By passing to a further sub-
sequence, if necessary, we may assume that the sequence ||4,| is almost constant
(up to a factor 2, say). Now it is well-known that L,(0, 1} has the Banach—Saks
property; that is, every weakly convergent sequence in L, (0, 1) has a subsequence
whose Cesaro averages are norm convergent. Thus by passing to a suitable sub-
sequence of the v,’s, we may assume that

| Zeos DA = o).
By repeating the argument used to prove (2) (using 37_, (—D*y, instead of
Dr_ t) we get
3 lhdl = 8\UJle k=1,2,....
Since
1A = 1ol = WUy, Tyl = 10T +40) < S|UY

and since T'is a quotient map there are {z,};> , in /; so that |[z,|=5[U| and Tz =f,.
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Let now w,€l; be such that
“® V(Sz, fi) = V(Szi, Tz) = (awy, Twy).

If the sequence {w,};>, is not a Cauchy sequence then by passing to a sub-
sequence we may assume without loss of generality that there is a constant y=0
so that [y, —wul =2y for every k and || 35", A(woer1—wa)||=y Siey 4] for
every choice of scalars {4,};> ,. By repeating the argument used to prove (2) and (3)
(noting that |Vli=1 and |Sz|=58)U]) we get that
) [Wors1—wall = 20B|Uf/a k=1,2,....

Cleazly (5) is also valid for large k if {w,};>, is a Cauchy sequence. We have for
every k
(6) W7 (Va1 Vo — War 11+ Wadll = 1T (Vo 11— y20)ll =208 U1l /x
= 1-208U}/a.
On the other hand, since |[F]|=1 we get by (1) and (2), (3) that

IT (Yoses1— Yor— War+1 + Wl

(7 =S Wak+1— Vox— Zas 1+ Zo)ll H I T (Was1— Vak— Zag o1+ 20|

= [ Svgg all + S0kl + | Szog s 11l 1S Zgill + 1| g all 1 el

= 32| U| +108||Ul| =42«|U]|.
By combining (6) and (7) we get

U = «/(20F+502%). [
Theorem 2. Let «,=(1/2)*, n=1,2, ... and let {m};., and {n);, be two

increasing sequences of integers. Then (3., ®X, ), and (3;.,0X, ), are
isomorphic if and only if the sequences are eventually eZual, i.e. if there are kintegers

ko=1 and i, so that m=my, for every k=k,. In particular, there are 2% many
isomorphism types among the spaces of the form (2,7 X )
k

Proof. The “if” assertion is obvious. In order to prove the “only if” assertion
it is enough to prove that if N, is a subset of the integers so that n,¢ N, then for every

() U: Xan,, ~ (ZnENoeaX"n)l’ v: (ZnENo@X“n)l - Xa‘n0

such that VU=identity of X, we have |U| ||V||=K/x, where K is an absolute
constant. ’

Let us decompose N, into a union N, u N, where Ny={n€ Ny, n<n,}, N, =
{n€ Ny, n=ny}. It follows from Proposition 1b that d(l, (Jc N;®Xan)1)§1/“no_1
and hence since (Sucny@ Xan)1=Z contains a subspace isometric to /; onto which
there is a projection of norm 1 we deduce that d(Z, (3, NO@X%)I)§4/a,,O_1.

Each X, can be represented as {(«,x, T,x); x€/(n)} where /,(n) is isometric
to /; and where T, is a quotient map from /;(n) onto a space L,(0, 1)(n) which is
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isometric to L,(0, 1). The space (S,cnz®l(m), is isometric to /, the space
(Snent® L, (0, 1)(m)), is isometric to L,(0, 1) and the map T: (SuentdhL(m)),~
(Znent® L1 (0, 1)(m)), defined by T|, =T, is a quotient map. Let S be the
operator from (Z,cnt®h(n), into itself defined by S|, .,=a,-identity. It is
clear that

Z = {(Sy, Tv); Y€(Zneny®h(m)}

and that | S| =d, - Hence, by Proposition 2 for every U and V as in (%) we get
WOV I 2 oy - 1 /4 (5005, + 200, +.1)-

The desired result follows now from our choice of the sequence {a,}; ;. O

To conclude this paper, let us recall the following result from [4]. If X is a
separable %, space and if U: /;—~X is a quotient map then ker U is an %, space
which determines X uniquely (i.e. if U;: ,-X;, U,: l,~X, are quotient maps
and X; and X, are %, spaces then X;~X, if and only if ker U, a~ker U,). Hence
from Theorem 2 we can deduce that there are 2% many mutually non-isomorphic
%, subspaces of [ .

Remark. Recently Bourgain, Rosenthal, and Schechtman have constructed
uncountably many separable %, spaces for 1<p<-oo, p2. Their work also gives
other new information about the structure of L,; e.g., their examples provide for
2<p—< oo the first examples of subspaces of L (0, 1) which do not contain isomorphic
copies of L,(0, 1) and yet do not embed into ([,HLD...),.
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