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1. Introduction 

Let E be a closed, proper subset of the hyperplane y = 0  in R n+l. A point in 
R n+l is, as is customary, denoted by (x,y), where xER" and yER. We assume 
that each point of E is regular for Dirichlet's problem in O = R " + I \ E .  C will in 
the following be a constant, the value of which may vary from line to line. 

Consider the cone NE of positive harmonic functions in O with vanishing 
boundary values at each point of E. It is easily seen that ~/~ contains a non-zero 
element (Theorem 1). 

According to general Martin theory (see e.g. Helms [8]) each positive harmonic 
function u in an open set f2 may be represented as an integral 

u(x) = f ~ g(x, r d~(O, 

where A1 denotes the set of minimal points in the Martin boundary of O. For each 
{EA1, the function x-~K(x, ~) is harmonic and minimal positive in the sense of 
Martin. We recall that a positive harmonic function u: f2-~R is minimal positive, 
if for each positive harmonic function v: f2-~R 

v < u = , v = 2 u  for some 2, 0 -<_2<1 .  

Now we return to the special setting of this paper, i.e. f 2 = R " + I \ E ,  E c  {y-----0}. 
In this situation two cases may occur (Theorem 2): 

Case 1. All functions in ~e  are proportional. 

Case 2. ~E is generated by two linearly independent, minimal positive harmonic 
functions. 

Stated in terms of Martin theory: the Martin boundary of O has either one or 
two "infinite" points. 
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The main aim of this paper is to give conditions on the set E, which determine 
whether Case 1 or Case 2 occurs. We thereby prove a conjecture made by Kjell- 
berg [13]. 

2. The existence of functions in ~E. Some lemmas 

First we formulate a lemma, which will be quite useful in the sequel. 

Lemma 1. Let B={(x,y)ER"+X; ]xl~+y"<l}, the open unit ball in R "+1. Sup- 
pose that u is subharmonic in B and that the following estimate holds: 

1 
u(x, y) <= lyl"' (x, y)E B. 

Then 
u(x ,y )  <= C~ for lxl <= 1-~,  (x,y)EB, 

where C~ only depends on ~. 

Proof. This lemma is a special case of the "log log-theorem" of Beurling and 
Levinson (Levinson [14]) extended to subharmonic functions in higher dimensions 
by Domar [4, Th. 2]. 

Theorem 1. ~e  contains a non-zero function. 

Proof. Let Dm={(x  , y)ER"+I; ]x]2+lyl2<m ~} and let u m solve the Dirichlet 
problem 

110 [xl2 + IYl~ = m~ 
Vm(X' Y) = (x, y)EDmnE 

AVm = O in Dm\E.  

We normalize by putting Um(X, y)=Vm(X, y)/Vm(O, 1) and claim that there is a con- 
stant CM, depending only on M such that 

(2.1) Um(X,y) <= CM, (x ,y)ED M, m >= 2M. 

By Harnack's inequality it easily follows that 

(2.2) urn(x, y) <= C~t (x, y)EDM. 
lyl"'  

Thus an estimate of type (2.1) holds for (x, y) E DM n {I Y l -> 1}. For points l Y] -<- 1 
we apply Lemma 1 to conclude that (2.1) holds. 

The function w M solving the Dirichlet problem 

w~ = {CM on [x[2+y2=M 2 

on EnDM 

A wM=O in D M \ E  
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is a harmonic majorant for all urn, m>=2M o n  D M and therefore {Urn}==1 is equi- 
continuous on each DM, and we may extract a subsequence converging uniformly 
on each compact subset to a function u harmonic in/2.  Because of the majorization 

u,,(x, y) <-- WM(X, y), (X, Y)EDM, m >= 2M 

it follows that u takes the boundary value 0 on E. Since u(0, 1)= 1, u is non-zero 
and Theorem l is proved. 

Lemma 2. (Herglotz' theorem.) A positive harmonic function u in the upper 
halfspace y>O has the representation 

(2.3) u(x, y) = ~ : y + C , ]  yd#( t )  ,+1, 
J (Ix-- tl 2-k y2)-~- 

where x~--O and # is a positive measure. 

When u(~E,  u(x, O) is a continuous function on R" and (2.3) reduces to 

f yu (t, O) (2.4) u(x, y) = z y + C ,  ,+1 dt. 
( I x -  tI~ + y2) --T 

A similar representation also holds in the lower halfspace. 

Lemma 3. Each function UE ~E satisfies the growth estimate 

(2.5) u(x, y) = O(l(x, Y)I) as ](x, y)] ~ oo. 

Proof. We may without loss of generality assume that u is symmetric with 
respect to the hyperplane y = 0 .  By (2.4) it follows that 

(2.6) u(0, R) ~ Ru(0, 1) 

and Harnack's inequality gives the estimate 

C R"+I u(x, y) <-- {Y[" for [(x, Y)I ~ 2R. 

We conclude that (2.5) is true for points in the cone ]y]~-Ixl/4. For points close to 
the hyperplane y = 0  we argue as follows: 

Take a point (xo,0) such that [Xo[=R and consider the ball {(x,y)~R"+l; 
l(x, y ) - (x0 ,  0)I~=R}. Normalize the coordinates (x, y) by putting 

{ ;  = xo+R~ R~/. 

The function v(~, q)=U(xo+R~, Rq) is subharmonic in [(~, q)[<l  and satisfies 
there the estimate 

R 
v(~, ~t) --< C I~l" " 
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By Lemma 1, v(4, ~l)<=C'R for [(4, ~/)l<l, [4[<----3/4 and it follows that 

R 
u(x, y) <- C'R for I(x, y)-(Xo, O)l <= --~-, 

where the constant C" depends only on the dimension. Since (2.5) is known to be 
true in the cone [y[ _-> Ixl/4, we conclude that (2.5) holds and the proof  of  Lemma 3 
is complete. 

Lemma 4. I f  u~ ~ has the representation 

(2.7) u(x,y) = c. f lYlU(t' 0),,+1 dt 
(Ix_t[~+y2) 2 

then 
u(x, y) = o(I(x, Y)I) as I(x, y)l - - '~ .  

Proof. The proof  is identical to the proof  of  Lemma 3 except that the initial 
estimate (2.6) is replaced by u(0, R)=o(R). 

3. Some characterizations of the cone ~E 

We first state some definitions and results from Friedland & Hayman [5], 
which will be needed later. 

Definition. A function u, u: Rd~R,  has the domain D as a tract, if u > 0  
in D and u o 0  as x approaches any finite boundary point of  D from the inside 
of  D. 

When u is a subharmonic function in R d, let M ( r ) = m a x l x l =  r u(x) be the 
maximum modulus. 

We recall the definitions of  the order 2 and the lower order # of  a subharmonic 
function 

2 = ~ l ~  log + M(r) 
, ~  log r , /t = ,~lim log r 

Thus Lemma 3 shows that 2 ~  1 for all functions in ~/~. 

When combining Theorem 1 and Theorem 2 of  Friedland & Hayman [5] we 
obtain 

Lemma 5. Let f (k, d) be the infimum of the lower orders of  subharmonicfunc- 
tions with k tracts. Then f (k ,  d)->_2(1- Ilk). 

Remark. As is seen from the proof  in [5], p. 143, for a positive, subharmonic 
function u with k tracts, it is even true that its maximum modulus M(r) satisfies 

M(r) >= C(u)r 
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Our  first character izat ion of  ~ e  is given in 

Theorem 2. The cone ~E is either one- or twodimensional.* 

Proof. By Theo rem 1, d im~E--> l .  We suppose dimt~e_->3, which we will 
show leads to a contradict ion.  Then  there exist three linearly independent ,  minimal  
posit ive ha rmonic  functions vl,  v2 and v3. I t  follows tha t  the sets 

f21 = {(x, y)~f2;  vl(x, y) > Vz(X, y)+va(x, y)} 

Q2 = {(x, y)E(2; v2(x, y) > Vl(X , y)-~v3(x , y)} 

03 = {(x, y)Ef2; v3(x, y) > Vl(X, y)'q-V2(X, y)} 
are disjoint and non-empty .  I f  say f21=0, vx<=v2+v3 in f2, and  then by Kjel lberg 
[12, Th. 1], vl is a linear combina t ion  o f  v2 and v3, which contradicts  the linear 
independence.  

We define 
w = max  (0, Vl - v 2 -  v3, v 2 -  v l -  v3, v 3 -  V l -  v2). 

w is subharmonic  in R "+1 and has at least 3 tracts. L e m m a  5 now gives that  w 
has lower order  # > - 2 ( 1 - 1 / 3 ) = 4 / 3 .  But  this contradicts  tha t  g<=).<=l for  all func- 
tions in ~ ( L e m m a  3), and the p r o o f  is finished. 

The  following theorem,  which will be used in the sequel, maybe  also illuminates 
the two cases. 

Theorem 3. Case 1 is characterized by either of  the following equivalent con- 
ditions: 

(i) ~ e  is one-dimensional; 
(ii) all functions in ~ are symmetric with respect to the hyperplane y--O; 

(iii) all functions in ~ satisfy the growth estimate 

u(x, y) = o(l(x, y)l) as I(x,y)l - ~ .  

In an analogous manner, we may also give three equivalent characterizations 
of Case 2. 

(I) ~ e  is two-dimensional; 
(II)  there exist non-symmetric functions in ~E; 

(III)  there exists a fimction uE~E such that u(x,y)>-_ lYl. 

For  the p r o o f  of  Theorem 3 we need the following: 

L e m m a  6. I f  uE ~e  has the representation (2.7) (i.e. the constant x in the repre- 
sentation (2.4) is 0 both for the upper and lower halfspace), then for all x~R" the 
function y ~ u ( x , y )  is increasing for y>=O. 

* Added in proof. An extension of Theorem 2 valid when E is a dosed subset of a C 2 hyper- 
surface appears in Ancona [I]. 
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Proof. Let a > 0  and define 

v(x, y) = u(x, 2 a - y ) - u ( x ,  y). 

v is subharmonic for y>=a and v(x, a)=0.  Form the halfball 

B((0, a); R) = {(x, y)6R"+l; Ixl2+(y-a)Z < R e, y > a}. 

The harmonic measure of the spherical surface of the half ball evaluated at 
(x,y), y>=a, is O(1/R) as R-+~.  Since by Lemma4 v(x,y)=o(R) as R-+o% 
it follows that v(x, y)<-O, y>=a, Putting y=a+h,  h>0 ,  we conclude that u(x, a-h)<= 
u(x, a+h) and the proof of Lemma 6 is complete. 

Proof of Theorem 3. 
(i)=,(ii): If  a non-symmetric function u exists, then u(x, y) and u(x, - y )  are 

linearly independent and hence ~E cannot be one-dimensional. 
(ii)=,(iii): Since u6C~e is symmetric, it has the representation 

u(x,y)= Iyl+c,,f lYlU(t'O) 
�9 . + 1  dr. 
( I x -  t[ e + y2)--r- 

But here ~=0.  (If ~ > 0  then u--xy/2E~E, which contradicts that all func- 
tions in ~E are symmetric.) By Lemma4 it now follows that u(x,y)=o(l(x,y)l) 
as I(x, Y)[-*~. 

(iii)~(i): Suppose that t~ n is two-dimensional. Let Ul and u,. be two minimal 
positive harmonic functions, which generate ~E. Then the sets fax= {(x, y); ux(x, y)> 
Uz(X, y)} and 02= {(x, y); u2(x, y)>ua(x, y)} are both non-empty, and consequently 
the function 

v(x, y) = max (0, ul(x, y)-u~(x,  y), Uz(X, y)-ux(x ,  y)) 

is subharmonic and has two tracts. 
By the remark following Lemma 5, we conclude that the maximum modulus 

of v, Mo(r), satisfies 

M.(r) = > C = Cr. 

We now see from the definition of the function v that 

max max uv(x, Y) >= Cr, C > O. 
v=1,2 I(x, y)l =r  

This contradicts the assumption (iii) and the proof of the equivalence (i)** 
(ii)r is finished. 

The proof of the second part, (I)~(II)*~(III) is essentially contained in the 
proof of the equivalence (i),,(ii)~,=~(iii) above. 
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4. The distinction theorem 

We now introduce a funct ion fiE(x), x E R ' ,  which measures  how " th in"  the 
set E is at  oo. Let  0 < ~ < 1  and let K x be the open cube in R "+x with center at  
(x, 0) and side a lx[~ all sides parallel to the coordinate  planes. Let  Y2x=K, \E .  
fiE(x) is defined as the harmonic  measure  o f  OKx in f2 x, evaluated at  the poin t  x, 
i.e. let w ~ solve the Dirichlet  p rob lem 

w~(~)={ lo  on OKx 
on E n  f2:, 

A w ~=  0 on K ~ \ E .  
Then  fin (x) = w:' (x). 

The  fol lowing theorem gives a necessary and sufficient condi t ion on E in terms 
o f  the funct ion fiE, which determines whether  the dimension o f  the cone ~E is 1 
or  2. 

Theorem 4. Let E and ~E be as defined in the introduction. Then dim ~ E - - 1  
or 2 and 

dim ~E = 1 

dim ~E = 2 

#~(x) 
i f  and only i f  f jxl~= 1 !x[" dx = =~; 

I~E(x) dx < ~ .  i f  and o.ly i f  f lx~-~ [xI n 

The p r o o f  will depend on the following simple l emma:  

/_.emma 7. Let K be the unit cube in R n+l. 

K = {(x, y)ERn+l;  [xi] <= 1, i = 1, 2 . . . .  , n, lY[ ~= 1} 

and let F C = K n { y : O }  be a closed set, all points of  which are regular for Dirichlet's 
problem. 

Let  coy be the harmonic measure of  { [ y / = l } n K  with respect to ~ = I ~ \ F  and 
let 09 be the harmonic measure of  OK with respect to ~ .  Then 

(4.1) o~y(0) ~ co(0) ~ (n + 1) c%(0). 

Proof. The left inequali ty in (4.1) follows just  by ha rmonic  major izat ion.  T o  
prove  the right inequality, we define co i as the ha rmonic  measure  o f  { [ x i J = l } n 0 K  
in 9 .  Then  

co(x, y) = 2)?=l~o,(x,y)+~y(x, y), 

and the desired inequali ty is a consequence o f  the inequali ty 

(4.2) ~i(0) _<- ogr(0), i = 1, 2 . . . .  , n. 
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We now prove (4.2) for i =  1. First we write 

co 1 (x, y) : ~k l(x, y) - Wl(X, y) 

~oy (x, y) = 0 ,  (x, y ) -  w, (x, y), 

where ~/1 (l~y) is the harmonic measure of {]xlt= 1}n K ({lyl = 1}n K) with respect 
to /s  wl and wy solve the following Dirichlet problems f o r / ( \ F :  

wl(x,Y)=l~l(x,y) on F 
on OK 

Awl=O in / ~ \ F  

wr(x,y)={~o,(X,y) on F 
on OK 

Awy=O in / ~ \ F .  

Since by symmetry 01(0) = $y (0), the inequality (4.2) follows from harmonic 
majorization and the inequality 

(4.3) 01(x, 0) _-> Oy(x, 0), 

which in turn is a consequence of 

~q(x~, x~ . . . . .  x . ,  O) _-> r x~ . . . . .  x . ,  O) 
(4.4) 

= % ( 0 ,  x2 . . . .  , x . ,  0 )  _-> ~0~(x~, x~ . . . . .  x . ,  0) .  

The two inequalities in (4.4) may easily be proved by reflections of the functions 
~ and ~kr in the hyperplane x~ = a in analogy with the proof of Lemma 5, and the 
proof of Lemma 7 is completed. 

Proof of Theorem 4. We first prove 

f ~ (x) dx = co =~ dim ~ = 1. 
Ixl=~l Ixl" 

Suppose on the contrary that dim ~E = 2. Then according to Theorem 3 there is a 
function uE~E such that 

(4.5) u(x, y) >= lY[. 

We now need an estimate of u(x, 0) from below. Recall the notion of the moving 
cubes Ks, introduced in the definition of the function/~E (x). 

From (4.5) it follows by harmonic majorization that 
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where we have used the standard notation o9(~, F, N) for the harmonic measure 
of F_cON with respect to N evaluated at ~. But by Lemma 7, m((x, 0), Kx~{lyl= 

Ixl/2}, ~x)>-fl~(x)l(n+ 1) and hence 

u(x, o) >= Clxlfl~(x). 

By Herglotz's theorem (Lemma 2), we have 

u(o, 1) > c f . .  .(x, o).+1 dx > c f .  txl~(x) 
= = n n+ l  

(Ixl~+ l)--e- (Ixl~+ l)--r- 
f as(x) d x  = ~,. dx >= C Ixl_~l lxl" 

This contradiction shows that dim ~ e = 2 ,  
first implication. 

We turn to the proof of the implication 

and this completes the proof of the 

f &(x) dx < oo =~ dim ~ = 2. 
Ixj_~l lxi" 

Again we argue by contradiction and assume dim ~ E =  1, which by Theo- 
rem 3 and Lemma 2 implies that u is represented by a Poisson integral of its bound- 
ary values ( n = 0  in (2.4)). In particular 

(4.6) u (0, R) = c fR~ Ru (x, 0) n + l  dx 
([Xl~ + R~)-Z - 

and u(0, R)/R-+O as R-+~,. Choose a sequence Rk~oo such that 

(4.7) ~<=u(O' r) __u(O'  Rk) for r >= Rk. 
r R k 

By Harnack's inequality and Lemma 6 it follows that 

(4.8) u(x, o) <- cu(o, Ixl)/~.(x). 

The estimate (4.8) inserted in (4.6) gives: 

u(O, I~0 <= c fR" R~u(O, Ix[),+1 &(x)dx. 
(lxI~+RffV - 

We split the integral into two parts, thereby obtaining 

(4.9) < c t" R~u(0, Ixl) f .  (o, Rk) u 
= - - . ] [ x [ ~ R  k . . . . .  n+l fl~(X) dx+ C~lxi~_Rk. 

([xI~+RD 9- 
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In the first integral we use the estimates 

(4.10) 

(4.11) 

and in the second 

(4.12) 

u(O, lxI) ~ Cu(O, R~), Ixl ~ R~ 

1 1 
l - -  - -  --n +-i" ~ i~n+l  

u (o, Rk) u(O, lxl) < _ _  Ix[=>Rk 
Ixl - g~  ' 

1 1 
(4.13) n + l  <- Ix[n+1" 

[ ( I x l ~ + R D - r -  

(_4.10) is again a consequence of Harnack's inequality and Lemma 6. (4.12) is just a 
reformulation of (4.7). 

After the introduction of the estimates (4.10)--(4.13) and division by R,, (4.9) 
takes the form 

(4.14) u(O' Rk) < c u(O' Rk) ( f flE(X) dx + f fiE(x) } 
R-'-'-~- Rk Ixl~-ek R~, al~l_~gk [xl" d x .  

But the convergence of 

f l~L~l BE(x) dx 
- Ixl" 

immediately implies that both integrals in the parenthesis of the right hand side of 
(4.14) tend to 0 as Rk -~ ~. This is a contradiction and also the proof of the second 
part of Theorem 4 is complete. 

5. Some corollaries and applications of Theorem 4 

Corollary 1. Suppose that E omits a one-sided circular cone ~ in It" for 
[x[_->Ro. Then d i m ~ E = l .  

Proof We need only check that 

J f ~ I ~  fiE(x) dx = co. 
- lxl" 

But this is obvious, since if a is chosen small enough, fiE(x)= 1 on the part 
of a slightly smaller cone Y/", where ]x]-~2R0. 

Let Sxo(r ) denote the open ball in R" with midpoint x0 and radius r. 
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Corollary 2. Suppose that 

mn(E(~ Sxo(A [XoI~)) :~ ~ > 0 

for all xoER n, [Xo]->Ro and some ~ < l / ( 3 n +  1), A>0,  3>0.* Then dim:~E:2 .  
Here mn denotes n-dimensional Lebesgue measure. 

In particular we deduce 

Corollary 2'. 
m,(En  Sx~(r)) -~ ~lm~(S~(r)) 

for all [Xol->Ro and some r/>0, r > 0  implies that dim ~ = 2 .  

For the proof of Corollary 2 we shall need the following lemma about estima- 
tion of harmonic measure, which might also be of some independent interest. 

Lemma 8. Let E'C={(x, 0)ER"+I; !xt<=R}, all points of which are regular for 
Dirichlet's problem and suppose that 

m, (E" n Sxo (h)) >: ~lmn (Sxo (h)) 

for some t />0 and all xo, Ixol<=R--h. Let co(x,y) solve the Dirichlet problem 

{10 Ix[2 + Y2 = R~ 
o~(x, y) = (x, O)EE' 

aco = o in {(x, y)ER"+I; txl~+y ~ < R~} \~"  
Then 

Ch 
co(O, O) ~_ 

~13R ' 
where C is an (absolute) constant. 

Proof. Without loss of generality we may assume h =  1. Let us introduce the 
following notation: 

V m= {xERn; ]xv--mvl'< ~ } =~- ,  v = 1 , 2  . . . . .  n , mEZ" 

bin : sup co (x, 1) 
xEF,, 

M m = sup co(x, 0). 
xEFm 

Consider the Dirichlet problem for the half ball {(x, y)ER"+l; [x]2+y2~R ~, y->0}. 
Let P(x, y; x', y') be the Poisson kernel for this problem. (x, y) denotes an interior 
point and (x', y ' )  belongs to the boundary. Put 

Amt(X ) =. fF , \E ,P(x ,  1; x', O)dx', x~ Fm, 

* There is no reason to believe that the constant 1/(3n+ 1) is best possible. 
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where m, IC Z". (A,.t) satisfies the following conditions: 

(5.1) ,~ltlaRAml(X) ~ 1--6 ,  tr = 

< C 
(5.2) A,.,(x) = -~--~_ll.--4- ~ . 

Consider the following Dirichlet problem for the half ball: 

10 l x i '+y ' -=  R '  
u (x, y) = (x, 0) E E '  

M m (x, O)EFm\E ' ,  m E Z " ,  Iml <= R 

A u = O  in {(x,y)ER"+l; lxl2+y 2 < R  ~ , y > 0 } .  

Let a.,t=A,.~(x(")), where x~176 is a point such that b, .=o)(x  (m), 1). 
By harmonic majorization 

(5.3) bm ~ .~III~R ant Mt + Cm, 

where C,. is the maximum of the harmonic measure of Ix12 + y 2 =  R z, y > 0, evaluated 
at (x, 1), x6 Fro. 

Clearly the following inequality holds: 

�9 { C l } _ - g . "  
(5.4) C,. ~ mm R - - i r a  I , 

We also need the estimate 

(5.5) M m ~ bm-t-g m. 

It follows by a reflection of  the harmonic function ~o(x, y) in the hyperplane 
y =  1/2 analogous to that in the proof  of  Lemma 6. Thus, define 

v(x,  y) = o~(x, y ) - o ~ ( x ,  1 - y). 
v is superharmonic in 

=> 

and v(x,  y ) ~ -  I on the spherical surface of Sm. Since the harmonic measure of  
the spherical surface is O ( ( R - I m ] )  -I)  at the point (m, I), we conclude that (5.5) 
holds. 

When the estimates (5.4) and (5.5) are introduced in (5.3), it takes the form 

(5.6) b m ~ .~.laml(bt+ gt)+ gm . 
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From this inequality we wish to conclude that 

Cff 

bm--<~ R-lml" 

In order to do so, we show that the matrix A--(amt) is a strict contraction 
(IIAJJ < 1) with respect to the weighted l~-norm 

[Ib[I : m a x  Ib,.[~., LmI~R 

~x.,  = max  ( g - I m [ ,  K),  

when K =  K(a) is large enough. 
Evidently, for I]blL <= 1 

1 
(A b)m __<- (1 - a) -~ ,  

so we only have to verify that 

1 
(Ab),~ <= (1- f i )  R - [ m l "  [m[ <= R - K ,  3 > 0 .  

Splitting the sums in three parts, we have 

1 1 
(Ab)., <= .~llt~R a,.l <-- ~__, a,.l 

C 1 C 1 
-[- ~"~(R--]ml)<=Jl--m[~--R--lm[--1 [l--m]n+z R--[l[ t-'~ll-ml~-R-Iml-1]l--m[n+Z K 

= & + & + & .  

Using (5.1), the first sum is estimated as follows: 

S 1 -<- 
1 - a  

O" 

2 

R - I m l  1 - --- R - I m l  

The second sum is estimated by an integral 

c f'~(R-Im[)~-[tl~--R-lm[-1 It[ ~+z R-It+m] 
S~ I dt 

<= c f 1 ~ r._ 1 1 
Jy (g--lmj)~_r~_R--lml--1 r n+z R- - r - - [m]  

dr 

[ 1 log ( R - I m  I)] 
c a ( R - I m l )  ~ ~ ( R - / m l )  ~ J" 
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Similarly the third sum is estimated by an integral 

<-cf a l l  
$ 3  - -  r_~R-lmi-1 K r "+1 r " - l d r  <- 

C 1 

K R-Iml"  

I f  K>=C'/a 2 for some constant C', it follows that 

o" 
IIAII < 1 4" 

We now return 

(5.7) 

with 

to the inequality (5.6), which implies the vector inequality 

b <= A ( b + C I K r ) + C 2 K r  

r=min(1 1 ) 
' R - - l m l "  

Clearly lit [1 ~ 1. Since A is a contraction it follows that 

from which we conclude 

Consequently 

b ~- A b + C K r ,  

b <= C K ( I - - A ) - l r .  

C 
Ilbll < CKIIU -4)-111 < - -  ~ _  . 

By the definition of the norm 

C 
b < 

o : -  R o . a  �9 

Remembering the inequality (5.5) and the fact that a,-~t/, we finally get the required 
estimate 

C 
co(O, O )  ~ -  - -  

and the proof  of Lemma 8 is finished. 

P r o o f  o f  Corollary 2. We choose t/=C][x] "~ and h =  Ix[" in Lemma 8 and thereby 
obtain the estimate 

fl~(x) <_- c Ix1(3"+1)~ 
txl  

Since a <  1/0n + 1), the integral &(x)/lxI"dx converges. 

Theorem 4 now implies that dim ~E = 2, which is the desired conclusion. 
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We have now essentially proved the conjecture of  KjeUberg [13], which in our 
notation may be stated as follows: 

Corollary 3. I f  EC=R~ has the property that there are numbers R and e>0 ,  
such that each ball in R ~ of  radius R contains a subset of  E of n-dimensional Lebesgue 
measure ~, then a function uE ~ls has the representation: 

u ( x , y ) = c y + t p ( x , y ) ,  y > 0 ,  

where r is bounded in R ~+~. 

What remains to prove is the boundedness of ~o. We first note that u is bounded 
on the hyperplane y = 0 .  This is a consequence of the estimate u(x, y)=O(t(x ,  Y)I) 
(Lemma 3) and the estimate of harmonic measure in Lemma 8. That r is bounded 
now follows immediately, since r is the Poisson integral of the bounded function 
u(x, 0) (cf. (2.4)) and Kjellberg's conjecture is completely proved. 

We shall now confine ourselves to the case, when n =  I (the complex plane) 
and to regularly distributed intervals, where sharper results may be obtained. 

Theorem 5. Let p be a real number, p>=l, and put 

E = 5 [s ign(m). lmlV-d~,  sign(m),lmlp+d~],  
m ~ - - o o  

where {dm}~ . . . .  O<dm< 1]2, is a sequence of real numbers such that 

(5.8) log d k ~ log dm if k ".. m, 

k,m-~o~ or k , m ~ - o o .  
Then 

(i) d i m ~ E = l  i f  and only if ~ , ~ o  logdm m S c o  

logdm 
(ii) dim ~E = 2 if and only if  ~m*O-- m---T-- < ~o. 

Proof. We first prove 

- l og  dm 
Zm~0 m S - o~ =~ dim ~e  = 1. 

Again we intend to apply Theorem 4. Without loss of  generality we may assume 

~ =  i - log dm 
m-------------- ~ -  = ~ .  

To estimate the harmonic measure • ( t )  for t>0 ,  we use the auxiliary function 
log ]sin ltzllVl, defined for Re z > 0 ,  where the branch of  z lip is chosen, which is 
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positive for real positive z. On the circle Iz-kpl=dk w e  have 

1 I 1 1 Z - 1  1 
tsinnzT[ <= ] z - kP[ .  max n[coszrzT, zv  ~ d k . 2 n - - k l - p .  

!z--kPl~--dk 7 P 

Consider the square 

on 

and 

1 < : I t } "  R, = {(x, y); t x - t l  ~-~t,  lyi = ~  
It follows that 

l 1 
U l ( Z ) = l o g l s i n r c z p [ +  rain log ~/-~k--C <_-- 0 

1---t~kP~8--. t 
2 2 

U ( ~ c ;  Iz-k,J = d,,} 
1 3 

- - t ~ k P ~ - - t  
2 g 

L 1 
ul(z )  <= CtP + rain log-v- 

l t ~ k P ~  3-~ t ak 
2 Z 

on Rt . 

Therefore, for tE/m={tCR; ( m +  l/4)P<=t<=(rn+ 3/4)P}, 

fin(t) >= C 

1 
min log ~ -  Cx 

ul ( t )  >- C ~ 2 
1_ 1 - • 1 

t p +  min log t p +  mill log 

2 -- - - 2  

Because of the assumption (5.8) 
1 

log - 5 - -  C~ 
fl~(t) ~_ C " "  for tE I,,. 

1 
m +log-~- 

Using this estimate we get 

- l t i  t 

m +lOg-d-~ 

raP--1 
dt > c 2 2  

=" = 1 D,Ip 

log ~ -  C~ 

1 
m +log-~- 

To show that the sum in the right hand side is divergent, we divide the situa- 
tion up into two cases: 
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Case 1. drone -m/2 only for finitely many m. Then for some No, 

f Itl~ fl~(t) at >= C1 ~'2=Uo 
- Itl 

log ~ -  C~ 

m ~ 
~ o o  

Case 2. d,,<=e -"/~ for infinitely many m. We choose a subsequence mj such that 

mj+ z ~= 4 m j .  
But (5.8) implies that 

logdk <=--Cm for T m ~ k < ~ 2 m .  
Hence 

fiE(t) 1 f.l~l !t I d t ~ C ~  X 1  .1 C 1 X m = l m 2 _ _ o  ~ _ j -~1 j ~ k ~ 2 m j  Htj 

and the proof of the first part of Theorem 5 is complete. 
Note that for this part we only need a one-sided condition on E, e.g. 

En[0 ,  oo) = ~fi [kP-dk, kP+dk], 
k = l  

where ~k=x (--log dk)/k2= co and (5.8) holds. 
Now turn to the proof of the implication 

- -  log d m 
~'m*0 m z < oo =, dim ~E = 2. 

We first prove ( & ( t ) / O  at < 

For m_->l define 

-,~ p 1 d m 
(5.9) em= m - - m  1--mp P mp_l . 

The function which we will use to estimate the harmonic measure is F(zl/O, 
harmonic for Re z>O, zr U~=l [ kp-dR,  kP +dk], where 

F ( w )  -~- loglT~W]'q-Z'm=X]~CmJm_emlog 1-- t d t+ log  1+--~ }. 

Again the branch of z ~/p is chosen, which is positive for real positive z. 
A simple computation shows that for real w 

1 f~+~ log I w - t i d t  >= log e,~. 2e~ m--~m 
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Moreover 

(5.1o) 

1 f.+,. dt_loglw_m [ ,._.. log [w-t[  

f~r 

sup <~ 
- 6 m - . , . ~ _ , ~ _ , . + . . .  [w-tl 2 - ] w - m l  2 

]w--m]=>l. 
In particular, for w=0,  (5.10) becomes 

(5.11) 
e2m 

- - / ' n + ~ "  t-- log m 
2 e  m a m - 8 , .  log =< --.m2 

We shall need a lower bound for F(w) when wE[m-e.,, re+e,.]: 

�9 I sinnw +s ,m+ 1 1 [k+*kloglt__wld t 
r(w) -- Jog I ( w + m +  1)(w---S-~)(w-m- 1) ~ = , . - 1  2ek ~ , - ,k  

k - - - ~ k  J k_tk og t  

=> rain log [Trcoszrwl-21og2+logsm_l+logem+loge~+l 
w E l m - e m ,  m-be m] 

- Z2=a Iw-k?- Zk=~-~r k ~ : m - - l , m , m + l  

_->--3 max log ----1 I0. 
m--l~_k~_m+l ~k 

Consider again the square 

and 

a ,  = {(x, y); Ix-tl  = y t ,  lyl ~ ~ t } .  
It follows that 

1 
u 2 ( z ) = F ( z l / P ) + 3  �9 max l o g - - + 1 0 ~ 0  

1 7 ~k 
4 4 

on R t 

1 
- -  1 . <  1 u~(z)>-Ct p on [ y l = T t , [ x - t [ = u  
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Furthermore F(z) is bounded above for real z. Using Lemma 7 and (5.8) we con- 
clude that for mP<=t<=(m+ 1) p 

m a x  log § C1 1 
1 k~ ~ l o g p + ( p - - 1 ) l o g m  + l o g - ~ +  C1 

fiE(t) < C Tin<= --Tm <== C 

- -  m 

tV 

Hence 

_._1+ 
log p + (p- -1)  log m + Iog dm C1 

f S  (m + 1)p- mP C 
t - m p m 

- l o g d , ,  C' ~ ! ~ 1 7 6  
C'  ~ = 1  m------~-- "}- 2 m = l  m 2 ~ o o ~  

The proof  of  f_-~ (flE(t)/lt[)dt< ~ is completely analogous and thus the proof  
of  Theorem 5 is finished. 
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