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1. An introductory survey 

Let us not too quickly pass in review those proofs of  the self-adjointness of 
Schr6dinger operators that in one way or another bear upon our subject. We recom- 
mend Chapter X of  [41] for an account of  self-adjointness questions that takes a 
wider view and that also discusses their physical relevance, and we refer to [26] 
for an extensive bibliography. The expert reader may immediately proceed to p. 22. 

I f  f2cR"  is an open (and in general an unbounded) set, and q a real-valued 
measurable function defined on f2, we put 

(1.1) z := - -A +q .  

It is usually very easy to find a subspace ~ of  the Hilbert space .~:=L~(I2) 
such that z t ~  is a symmetric operator in .~. One can take, for example, 

(1.2) ~ := C0~ (f2) 

if (and only if) 

(1.3) qELPoc(f2) 

holds. 
Let us assume (1.3) for the time being. We write 

(1.4) Tram :-- zp 

because this is so to speak the smallest operator that can be associated with (1.1) 
in 9- Since Tmi, is real, it has self-adjoint extensions [41, p. 143]. Of particular interest 
is the case that Tmi . has exactly one self-adjoint extension (Tmi n is then called essen- 
tially self-adjoint) in which case it is Tmin, the closure of Train, that describes the 
dynamics of  the underlying physical system (one or several particles in nonrela- 
tivistic quantum mechanics which are subject to external electrostatic forces or 
which interact with each other). I f  there are several self-adjoint extensions, each of  



20 Hubert Kalf 

these describes a different physical situation (See the excellent discussion in [41, pp. 
141--145]), which can be specified by a certain "boundary condition" to be imposed 
on the elements of the domain of  the adjoint of (1.4) given by 

(1.5) h((Tmin)* ) = {ulu , "CUE~} 

("zuE~3" means that ru is a distribution on C o (~2) which is generated by an L2(~2) - 
function). 

It is clear from (1.5) that (Tmin)* is the largest operator pertaining to (1.1) in ~3. 
It is very easy to see that Tmin is essentially self-adjoint if and only if (Tml,)* is a 
symmetric operator, which is the case if and only if ((Tmin)*U, u) is real-valued for 
all uED((TmIn)* ). A self-adjointness proof  suggesting itself is therefore the follow- 
ing. Use partial integration on K c c  ~2 '1) to obtain 

(1.6) L(-Au+qu)  = fK(tVuI +qluI ) 
(uED((Tm,.)*)) 

( a  ) On denotes as usual the outer normal derivative on (OK and show that 

_ Ou 
foKuN (uED((Tmin)*)) 

tends to zero when K exhausts ~2. 
Two questions, however, immediately obtrude themselves. 

(Q.1) Does the volume integral on the r.h.s, of (1.6) exist Jbr all u~D((Tmin)*)? 

(Q.2) Has every uED((Tmln)* ) a representative for which the surface integral in 
(1.6) exists and for which Gauss's theorem is applicable? 

(Since OK will be a set of n-dimensiona~ Lebesgue measure zero, it is clear that the 
surface integral in (1.6) does not make sense for the whole equivalence class 

uE D((Tmin) *). ) 
It was Carleman who in 1934 in the predecessor of this journal [5] and with the 

tools laid down in his memoir of 1923 [4] answered both questions positively for 
qEC~ Furthermore, he showed by a reasoning to be refined by Friedrichs 
[14, 15] that the surface integral in (1.6) tends to zero on a sequence of  spheres the 
radii of which tend to infinity if q is in addition assumed to be bounded from below. 
(At the same time Friedrichs had established the essential self-adjointness of Tm~ . 
under basically the same conditions in a seemingly different way [14] 2). We shall 

1) For open sets ~1, (2~ we write, following [1], g21 cC.Q~ if ~1 is compact and ~1 cg2~. 
2) Satz 2, p. 691, in conjunction with his Footnote 6 (he assumes besides semiboundedness 

ofq piecewise continuity if n=l  and qECI(R ") if nE{2, 3} [14, p. 777]), Cf. our Footnote 6. 
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come back to both proofs in w 6.) Dealing with (Tmi,)*, i.e. with a closed operator, 
requires the notion of a generalized derivative, and it must be recalled that it was 
not until a few years later that such a notion was systematically developed by Sobo- 
lev [51] and Friedrichs [16]. Carleman's (and Friedrichs's) restriction to lower dimen- 
sions is today clear from eq. (1.8) below together with the Sobolev embedding 
theorems. It is only in dimensions up to three that every uED((Tm~,)*) contains a 
representative which is continuous [52, p. 69 f.]. 

It must be admitted that Carleman's paper is rather sketchy, and a more detailed 
investigation of D((Tm~,)* ) was not taken up until after the war by Povzner [40], 
Stummel [54] and N. NiIsson [39]. The first two, however, are not concerned with 
questions (Q.1) and (Q.2). Nilsson answered (Q.1) in the affirmative if 

{~ (1.7) qELfoc(f2) for some p >  max 2, ~- , 

but did not look into (Q.2). Instead he proved that (Train)* is symmetric (under the 
additional requirement that q does not fall off at infinity faster t h a n -  const-r  ~) 
by using cut-off functions in order to avoid the surface term in (1.6). With the help 
of Stummel's results Ikebe--Kato [19] showed (see [44, Chapter 6] and [55] in this 
context) that 

(1.8) D ((Zmln) *) = {//[u E H12or (~'~) t') ~, "/Tu E ~} 3) 
if 

(1.9) qEQ~o~(g2) for some c~E(0,4] 

where Q~oo(O) is a class of potentials that had been introduced by Stummel ((1.7) is 
a sufficient condition for q to be in this class). 

Under condition (1.9) the answer to (Q.1) is therefore yes and so it is for (Q.2) 
owing to Sobolev's embedding theorem [I6, p. 69 t,.]. Using these results we proved 
in [22] that (Train)* is symmetric (the underlying domain being O=R" \{0})  for 
potentials which may have a certain strong singularity at the origin and at most 
- -  const- r 2 - -  behaviour at infinity by showing the vanishing of the surface terms 
in (1.6) along the lines drawn by Carleman and Friedrichs. Ikebe--Kato [19] and 
J6rgens [20], on the other hand, had established the symmetry of the adjoint of a 
general class of second-order elliptic operators by using cut-off functions. 

In 1972 Kat0 [30] proved a distributional inequality (see Lemma 1 below) with 
the help of which he showed that Tml, is essentially sdf-adjoint if q satisfies (1.3) 
with f2=R" and is bounded from beI0w. (This result had been conjectured by 
Simon [49]; for extensions to general second-order elliptic operators see [7, 8, 11, 

3~ For mEN we write as usual " H ~ ( O ) "  for the set of all (equivalence classes of) L~o~- 
functions whose generalized derivatives up to the order m belong to Z~oc(g2). 
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27, 28, 33, 35, 45].) Kato  remarks loc. cit. p. 139 that in the presence of such sin- 
gularities of  q it is a priori not clear whether a positive answer can be given to (Q.1). 
As a consequence his self-adjointness proof  is not a symmetry proof  of  (Train)*. 

Rather  he shows that R(Tmi,+c)=. ~ for some suitable c > 0  using the fact that 
( - A  + c )  -1 is "positivity preserving" [41, p. 185 f.]. It  will be one of  the results of  
the present paper  that even if the singularities of  q are as strong as in [30] the answer 
to (Q.1), (Q.2) will still be yes, so that the indicated symmetry proof  of  (Train)* can 
be accomplished. 

As a matter  of  fact we shall show that this is true under even extremer circum- 
stances like those envisaged by Kato  in his 1974 paper [32]. I t  was in this paper  
that he even relaxed assumption (1.3). When doing this one faces the problem that 
there is no longer an obvious candidate for the set ~ mentioned at the beginning. 
There is, however, a "largest" subspace of ~ on which (1.1) can be considered, viz. 
the set of  all those u~.~ for which the function qu generates a distribution on C o (f2) 
(so that zu also makes sense as a distribution) and for which xuE$. A sufficient 
condition for qu to generate a distribution is, of  course, quEL~oc(f2) a), and that is 
why Kato  suggested 

(1.10) ~ := {ulu E~, qu E L~oc(a ), $u E~} 

as domain of  the "largest ''5) operator to be associated with (1.1). Taking 12=R", 
Kato  established the self-adjointness of  

if 

(1.11) q~Lloo(a) 

is bounded f rom below (for generalizations see [6, 9, 27, 28]). Knowles recently 
showed [34] that the q-dependent subspace 

(1.12) ~ := {uluE~',  suppu  is compact in f2} 

can replace (1.2)just  as in the one-dimensional case if (1.3) no longer holds. That  
is to say, he assumes that q satisfies (1.11) with g2=R" and is locally bounded f rom 
below and then proves that (1.4) with the ~ given by (1.12) defines a symmetric 
operator with the property 

(1.13) (Tmin)* ---~ Zma x- 

Now at last we can describe the contents of  the present paper. Using Kato ' s  

4) In the one-dimensional case where (1. I 1) has long been the usual assumption rather than 
(1.3) [53, p. 458] no such requirement is necessary since a function u with a weak Ll-derivative is 
automatically locally absolutely continuous [46, p. 54; 52, p. 34]. 

5) This should be taken with a grain of salt. If q is "very singular" ~ '  might consist solely 
of the null element. 
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distributional inequality (Lemma 1) we show in w 2 that all elements of  ~ /  have 
locally finite energy integrals if q is locally bounded from below (Theorem 1). This 
answers (Q.1) in the affirmative. In w 3 we prove two versions of  Gauss's theorem 
which are tailored to the needs of spectral theory. The first (Theorem 2) involves an 
integrand with compact support and therefore does not presuppose anything of the 
underlying domain. The second (Theorem 3) answers (Q.2) positively for almost 
every open set whose boundary is the level set of  a "regular" function. In w 4 we 
combine our first version of  Gauss's theorem with an idea due to Simader ([48]; 
see Lemma 5) to establish (1.13) for very general situations (see Theorem 4). The 
resulting proof  is more elementary than Knowles's proof  [34] in the sense that it 
avoids use of the anti-dual of certain Sobolev spaces, an avoidance which we believe 
increases its clarity. 

The remaining Sections 5 and 6 are devoted to the special case 

(1.14) f2 = R% := R"\{0} 
with qs ) locally bounded from below (but possibly not  bounded from 
below at the origin or at infinity). This case has been studied extensively under con- 
ditions (1.9) [20, 21, 22, 26] Or (1.3) [6, 25, 47, 50] ([6] contains also a result under 
assumption (1.11)). With relation (1.13) at our disposal, we can use our second 
version of  Gauss's theorem to give a characterization of the Friedrichs extension 
of Tmi . [41, p. 177; 56, p. 317] by showing that a certain "distinguished" restric- 
tion of  T~,~ is symmetric (Theorem 5) just as we did earlier under more stringent 
assumptions on q [21, 26] or in the one-dimensional case [24]. Under additional 
requirements on q, the Friedrichs extension of Tmi n turns out to coincide with Tmax, 
so that Zmi n is essentially self-adjoint 6) (Theorem 6). 

Academic examples can, of  course, be constructed which subordinate to our 
Theorems 5 or 6, but for which self-adjointness has not been established previously, 
but this is not our point. Our point is to show that even under condition (1.11) a 
self-adjointness proof  can be reduced to a simple symmetry proof  involving surface 
integrals. Concerning our preference to deal with surface terms rather than to avoid 
them by using cut-off functions, we find that it reduces the amount of  technicalities 
in the proper self-adjointness proof  and thus adds to its transparency when the use 
of cut-off function is restricted to preparatory theorems such as Theorems 1 to 4, 
where they are probably indispensable. Moreover, such theorems can be used in 
situations where surface integrals are not so easy to avoid, e.g. in questions about 
the absence of  eigenvalues of Schr6dinger operators (see [23] and the literature 
cited there). It is also with this idea of  a building-block system in mind that we 

6) This is actually the way in which Friedrichs proved the essential self-adjointness of Tm~n 
under the conditions mentioned in Footnote 2. 
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do not try to avoid Kato's distributional inequality by truncating uEJt '  (as Frehse 
[13] in his proof  of  Theorem 1 does and as Simader does in his beautifully elementary 
self-adjointness proof  in [47]). 

We have being working intermittently on this paper for a couple of  years starting 
in Princeton in the academic year of  1974/75. We acknowledge with pleasure that 
we are indebted to B. Simon for inviting us to Princeton University, to G. Hellwig 
for supporting leave of  absence from Technische Hochschule Aachen, to Ministerium 
ftir Wissenschaft und Forschung des Landes Nordrhein-Westfalen for granting it, 
and to Deutsche Forschungsgemeinschaft for subsidizing it. Our thanks are also 
due to T. Kato for making [31] available to us, for permitting us to reproduce his 
result here (Theorem 7), and for pointing out to us (at the occasion of a visit of  
ours at Berkeley in 1975) that Theorem 1 had already been found by J. Frehse. 
They are due to J. Frehse for giving us his proof  of  Theorem 1 pr ior  to its publica- 
tion in [13], and in particular to J. Walter for countless stimulating discussions 
throughout our years in Aachen. They are due to H. Cycon and R. WiJst for spotting 
an error in the original manuscript and last, but not least to H. Leinfelder, now at 
the University of  Bayreuth, for many vivid talks in connection with our lectures 
about the topic of  the present paper at the University of Munich during the summer 
term of 1977, discussions that resulted in great simplifications of  our original proofs 
of  Theorems 1 and 2. 

2. A local Dirichlet type result 

In order to see what can be expected we start with the following 

Example 1. Let x (R"  and r := lx  [. For  v > 0  we define 

{[ v 2 -  r -2 if r > 0  
q (r) := 

0 if r = 0 
and 

n - - 2  

r > O  
(2.1) u+-v(r):= if r = 0 .  

Then 

(2.2) - A u + v + q u + v  = 0 (v > O) 

and 

hold in the sense of  distributions on R". Let ~/~oc be the "localization" of (1.10) 



Gauss's theorem and the self-adjointness of Schr~Sdinger operators 25 

defined in eq. (2.6) below. We deduce from (2.1) and (2.2) for n r  and v = l  that 

(2.4) u+vEJ/r but qu+v, Au+~(EL~oc(Rn), 

and from (2.1)and (2.3)for  n ~ 3  and vEI0, min{1 , -~22})  that 

u-~ E J/lot, 

but Vu_v~ L~oc(R n) and IVu_~12+qlu_vl2r Z~or 
This example shows that the answer to (Q.1) will be no if q has strong negative 

singularities. If  q is, however, locally bounded from ]?elow, the elements in the domain 
of  the maximal operator will have locally finite kinetic and potential energies (which 
implies in particular that (Q.1) can be answered positively). This is the contents of  
Theorem 1. 

Theorem 1 was found by J. Frehse as early as 1973 but was not published until 
recently [13]. (A "semilocal" version for qEL~o~(R" ) bounded from below can 
already be found in [30, Proposition 5]; the proof  uses, however, the essential self- 
adjointness of Tml, [30, Proposition 3]). We arrived at this theorem in 1974 and 
learned of  Frehse's result in the following year as we mentioned in the introduc- 
tion. The proof  we shall give uses the following inequality of Kato's [30] (see [45, 
10] for generalizations) the underlying geometric idea of  which is very simple [41, 
p. 183]. 

f ( x )  if f ( x )  # 0 
Recall (signf)(x) := If(x)] (xE~2) for a function f :  ~ ~ C. 

0 if f ( x )  = 0 

Lemma 1. Let f2cR" be open and u, AuEL~o~(f2 ). Then 

A Iu] ~ Re (sign ~ .Au) 
in the distributional sense, i.e. 

(2.5) f a  [u I A ~0 ~ f ~  Re (sign ft. A u) q) 

for all 0<_-q~ECo(I2). 

and 

Theorem 1. Assume that 

(2.i) f 2 c R "  is open 

(2.ii) q: f 2~R  is measurable and bounded from below on every compacl subset 
of . 

Then 

for all 
(2.6) 

Vu, u Cfoo(a) 

uE ~'~o~ := {vlvEL~or qvEL~o~(~2), zvEL~oo((2)}. 
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Proof. The difficulty one has to face is that there will be cancellations between 
the singularities of -Au  and those of qu (see (2.4)). We proceed as follows. Let 
K ~ c f 2  and K1 such that K c c K i c c f 2 ,  and let (CCo(KO be a function with 
0-<_(= < 1 and ( (x )=  1 for xEK. Suppose without loss of generality that u~dgio r is 
real-valued and q=>0 on K1. 

Proof of ]/quEL L .  Let Q6(0, d i s t ( /~ ,  Of2)). Then, writing   '=JQlul where 
JQ is the usual Friedrichs--Sobolev mollifier [16, 52] with kernel Jo (see e.g. [1, 56] 
for its properties), we have 

f~ J.qlul.v~ ~= f~ (-Av~+JQqlul)v~-f~:~(vvd~ff ~ 

-2__f =. v,Vv,. ~V~ <= f =x ( -  AvQ + J,q lul)v,~2+ f == vl (V~) 2 �9 

N O W ,  

0 ~ jo ( x - - . )  E Cg (~2) 

for every xEK1. Using jo (x-  .) as a test function in (2.5), we get (note AuEL~or 
because of -Au+qu, qu~ L~or 

-(Av~)(x) = --(JQA ]ul)(x ) --<_ --(JQ (sign u . Au))(x) 

for all x~Kx. Writing w:=-Au+qu and observing 

]JQ (sign u .  w)l <= JQ ]w] =: w~, 
we therefore have 

Since 

(2.8) lim II JJ - f ] l  Lp(tq) = 0 
~ 0  

for every fEL~oc(f2) (p=>l), the limit Q~0  on the r.h.s, of (2.7) exists. Hence 

(2.9) 0 <_- l i m s u p f  JQqlul .Vo <= l i m s u p f  JQq[u I .vQ(2< o~. 
Q~0 d K ~ Q~0 d K 1 

In view of (2.8) and Riesz's lemma there exists a sequence {Q.} with Q. ~ 0 as n ~ 
such that 

g . ~  ~ q[uI a.e.  on K1. 

lim live.-luIIIL,r = 0 

then implies the existence of a subsequence {o-.} of {Q.} with o-.-+ 0 as n-+ oo and 

v .-.lul a . e .  on K1. 

On account of (2.9) the sequence defined by f .  := J%q ]ul.v~" (n~N) satisfies the 
hypotheses of Fatou's lemma. Hence q[ul. [ul~LI(K). 
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Proof of VuEL~o c. From 

& (VJeu)2~z = & (-AJQu+ Jequ)Jou.~ 2 - &  Joqu, Jeu.~ 2 

- 2  f K 1 4 u . V 4 u .  ~v~ 
we infer 

~(VJe u)2~2<= & Je w. J e u '~2 +& JeqIu]" ve~Z+ 2f~1 ( 4 . ) ~ ( v o  ~ 

Hence 

(2.10) limsuPfK(VJeu)2 <= lim sup/" (VJeu)~ 2 < 

because of (2.9). 
Let jE {1, ..., n}. It is clear from (2.10) and from the fact that C~(K) is dense 

in L 2 (K) that 
.1"i (v):----- ~!m (v, Oj Je u) (v E L ~ (K)) 

defines a continuous linear functional on L2(K). According to the Riesz representa- 
tion theorem there exists therefore an element wjEL~(K) with the property 

k(~) = (v, wj) (v~L~(K)). 
Sending Q-+O in 

-(Ojq,, 4 u )  = (~, Oj4u) (q, CCg'(K)) 
we obtain 

-(oj~o,.) = (~o, wj) (eECg(K)). 
Thus 0iu exists in the generalized sense, and we have Oiu=wjEL2(K). | 

Remark 1. For q = 0  Theorem 1 reduces to a special case of V. I. Krylov's 
embedding theorem [46, pp. 181 f., 190]. It is not difficult to see J/e'lor162 
in this case. 

Remark2. For qEL~or ) locally bounded from below and uEL~or ) sat- 
isfying vu--0 in the distributional sense Frehse [13] derives the sharp result to be 
expected from Example 1 that uEL~r c~ H~o~(f2 ). 

3. Gauss's theorem for functions in D (Tm~x) 

We begin with a version of Gauss's theorem that does not require any well- 
behaviour of the open set t2cR"  since the integrand has compact support. 

Theorem 2. Under the hypotheses of Theorem 1 we have 

(3.1) -fouav = fovuvv 
for all u, vE dglo c if u or v has compact support in f2. 
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Proof. Suppose that v has compact support in ~. Let supp v c K c c O  be 
a set with 3:=dis t  (supp v, OK)>0 and 0<~ ,  a < m i n  {6, dist (K, OO)}. Then 

(3.2) --fK4u'AZ~ =fv4u.VJ.v 
by the usual Gauss theorem, since J~ v has compact support in K. Applying Theorem 1 
we see that the r.h.s, of  (3.2) tends to the r.h.s, of (3.1) as 0, a-~0. The 1.h.s. of  
(3.2), however, is somewhat more difficult to handle. On account of Av~LI(K)  it 
tends to 

-- fx4u.  Av 

as o-~ 0. To perform the limit 0-+ 0 we have to find an integrable dominating 
function. Let um be the truncation of u, 

u i f  ]u]<=m 
U m :-~-~ (m CN). 

ms ignu  if I u [ > m  

Theorem 1 then implies u,,~H~oc(~ ) for all m~N and 

lim [[U--UmI[L~(K ) = lira JIVu--VUm]IL~(K ) = 0 

(cf. [47, p. 56]). This allows us to conclude 

- L u ~ A v =  L V u m . V v  (m~N) 

from (3.2) with "u"  replaced by "Us". (The limit t r y 0  is uncritical; for the limit 
0 ~ 0  Riesz's lemma and IJQu,,[<=m have to be used.) To handle the 1.h.s. of  this 
equation (the r.h.s, again being easy), we note lUm]~=IUl and uAvEL~(K) this 
latter relation following from quv ~ L ~ (K) (by Theorem 1) and ( - A v + qv) u~ L I(K). 
H e n ~  

l im  L u , , , A v  = L u A v  

by tile dominated convergence theorem. II 

The open set Q c R "  on which the differential expression (1.1) is to be con- 
sidered will in quantum mechanical applications usually be of  a very simple nature. 
It will, for example, be R" itself, or the exterior of a ball, or R" with some isolated 
points or some easily describable submanifolds left out. Accordingly the subset K 
in (1.6) will also be a very simple one, e.g. a ball or an annulus. It will therefore be 
of sufficient generality to assume (of. [43]) that 

(3.i) f2 is a finitely connected domain such that there exists a compact set Bcs  and 
a real-valued function f E C I ( ~ 2 \ B )  with ]Vf] > 0  and l imx~aaf(x)= ~o. (We 
regard co as a point o f  0s in case (2 is unbounded.) 
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It follows from (3.i) that there exists a number to with the property that 

(3.3) Qt ~= {xlxEg2~B, f(x)  < t} (t >= to) 

is a finitely connected bounded domain the boundary of which consists of smooth 
(n-D-dimensional  closed surfaces which permit application of the classical Gauss 
theorem. (We note in passing that Gauss's theorem was proved in a very general 
setting by de Giorgi and Federer [12, p. 478].) 

Theorem 3. Suppose that condition (3.i) holds in addition to those of Theorem 1. 
Then 

vf 
(3.4) - L u A v = - - L •  uVv-~--~+ L VuVv 

, [ ' J I  , 

for all u, v~JClio c and almost all t>=to (0  t and to as in (3.3)). 

Proof. Let z>t>=to, u, vEdr and 0, aft(0, dist (Or, O~)). Gauss's theorem 
then yields (see [43]) 

vf 
- f ~ J o u .  AJ, v = --fa~ JQu.VJ, v - ~ +  f~VJeu, .  VJ~ . 

Therefore 

+f~(f,.V4u.VSo,~)d~. 
by Fubini's theorem. With the dominated convergence theorem and Theorem 1 at 
our disposal, there is no problem to perform the limits 0, o--~0 on the r.h.s, of (3.5). 
That the 1.h.s. of (3.5) also tends to what one expects can be shown by the argument 
given in the proof of Theorem 2. Thus we arrive at 

(3.6) - - L  L u vld =-L,\o.UW'VZ+L (LTu'w) 
In view of Theorem 1 and Fubini's theorem 

j o f  uVv Vf 
Ivfl 

exists for almost all 2~to  and is integrable. Moreover, 

�9 v f  f, (Lo uw- 77)d . 
We therefore obtain the desired relation (3.4) by using Lebesgue's theorem on 
differentiation in (3.6). | 
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Remark 3. Results related to Theorems 2 and 3, but with stronger stipulations 
on the functions and a weaker condition on the domain can be found in [2]. Both 
theorems are well-known if D((Tmi.)*)=D(Tmax) can be described by (1.8) (cf. 
[37, p. 41 f.]). In case (1.8) holds, every class u, vED(Tm,x) contains a representative 
with which (3.4) holds for all t>=to. 

In order to perform partial integrations with the elements of D(Tmax) to our 
heart's content we need the following lemma at least part of which is well-known 
(cf. [52, p. 84]). 

Lemma 2. Suppose that assumption (3.i) is satisfied with a function fE C 2 ( f 2 \ B )  
and let f2 t and to be as in (3.3). Then every class a~ H~oc(f2 ) has a representative u 
for which 

Ou(t) := fo IuI= (t ~ to) 
f2 t 

exists and defines a locally absolutely continuous function. Moreover, 

~k.(t)=' f .  [ -  Vf , f In[ 2 1 Vf V(]Vfl2) ] (3.7) -oa, 2 R e ( u V u ) - ~ •  a f  2 IVfl e 

for almost all t>=to . 

Proof. Let 0, ~ ' > 0  and T > t ~ t  o. With the abbreviation ve:=Joa we have, 
as a consequence of Gauss's Theorem (cf. [43]), 

f Iv~/2 Vf Vf f Ivol = c ,-, tv~I = 
o~< lvfl "~ IVfl -J'~,lVflAf~-J~,~lVfl " v f ~ -  

f f [ _  Vf Iv~l = 1 Vf V([Vf[2) ]] .st~,2Re(v~ 2 i v f l  = 

and therefore 

(3.8) 

+ s  I..I. , 

By differentiation we obtain (3.7) for all t ~  to with "u"  replaced by "re". Insertion 
of  ~k%_%, into the trivial identity 

1 g(t)=-~7_t[f[(s-~)g'(s)ds+f~ g(s)ds] (g~Cl( t t .~]) )  

therefore yields 

f ,  1 4 a - s 0 . a l  = <- constf~ ( 1 2 ~ a - J ~ . a l = + l v J o a - v j ~ . a l  =) 
at , \~t 
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Thus {J~atOt2t} is a Cauchy sequence in L~(Of2t) the limit element of which defines 
the desired representative uEfi. Now we can take the limit ~ 0  in (3.8) (using 
Fubini's theorem on the r.h.s.). The resulting relation shows (using Fubini again) 
that ~k u can be written as the indefinite integral over a summable function. This 
proves that ~,  is locally absolutely continuous. (3.7) then follows by differentia- 

tion. l 

We conclude this section with an observation we need in the proof  of Theo- 
rem 4. 

Remark 4. Let I2cR"  be open. With the help of the Friedrichs--Sobolev 
mollifiers one can immediately prove [37, p. 42] that Gauss's theorem holds good 
in the form 

L V u . v = - L u V v  

for all u, vEH~or ) when u or v has compact support in f2. 

4. (rmin)~g : Tmax 

Relation (1.13), which we let also occur in the heading of  this section, is an 
immediate consequence of  the notion of a generalized derivative if (1.3) holds, 
but it seems to be unknown whether this relation persists if (1.3) is weakened to 
(1.11). It is well-known, but not all obvious that it does if n--1 [53, p. 458; 38, 
p. 68]. One problem is to ascertain that Tml n is in fact densely defined. It was Kato 
[32] who showed that the theory of  sesquilinear forms provides a convenient tool 
to see that T , ~  is densely defined which result he proved under the assumptions 
that f2=R" and that 

(4.i) qEL1oe(f2 ) is locally bounded from below. 

Once Tmin has been introduced, which was first done for n >  1 under condition 
(45) (and f2=Rn) by Knowles [34], it is not difficult to see that it is also densely 
defined. As we mentioned in the introduction, Knowles then established (1.13) by 
using the antidual of  Ha(O) (or rather of  some modified Sobolev space because he 
dealt with general second-order elliptic operators). Applying our version of  Gauss's 
theorem laid down in Theorem 2 in conjunction with an idea of  Simader [48] (the 
regularity result of  Lemma 5 below is basically due to him), we shall show that 
this part of  his proof  can be replaced by a much more elementary argument. 

We shall assume throughout this section (without repeating this again) that 
the underlying domain f2 has property (3.i) and that q satisfies (4.i). To prove that 
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T~in is densely defined under these conditions, we mimic an argument of Kato's 
[32]. Let to be as in (3.3), to , kEN,  and ~OkECo(O ) a function with 

{~ on Q, 
0 ~ q ~ k ~ l  and ~0k= on (2\~2k+ 1 

Let e~R. Then 

qk:=Jq on (2k+1 
(4.1) /c on Q\Qk+ 

belongs to L~oc(f2 ) and is bounded from below. The sesquilinear form 

hk(u, v):= f qku  (u, v {wqw, 

is therefore densely defined, dosed, and bounded from below [29, p. 348]. These 
properties are shared by the sesquilinear form 

ho(u, v):= f v.W (u, 

(cf. [29, pp. 347, 352]). Hence ho+h k is also densely defined, closed, and bounded 
from below [29, p. 319]. Let Hk be the self-adjoint operator determined by this 
form. Then 

(4.2) D(Hk) c D(ho + hk) 
and 

(4.3) (Hku, u) = UVult~ + f R,, q, lul ~ (uE D(Hk)) 

[29, p. 322]. Moreover, it follows immediately from [29, p. 348 L] or [32, p. 197] that 

(4.4) Hk c T(m~ 

where T ~  x is the maximal Schr6dinger operator associated with --A+qk in 

Lemma 3. Let u~D(Hk). Then 

r c~D (Tmi.) 
and 

Hk fOk U = Tminr4)k u. 

Proof. Let u~D(Hk). In view of (4.4) and the trivial relations 

gOkUC~, supp ~OkU is compact in f2, 

q~pku = qk q~kuE L~o~(O), 

it is only the statement z~okuG~ that remains to be checked. Its validity, however, 

7) H01(~) is the closure of Co(g2) in the Sobolev norm (II,[I~+IIV.II2W ~. 
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results immediately from 

(4.5) z~o k U = (~k Zig - -  u A  (Dk - -  2Vu V~o k, 

which holds in the sense of  distributions on ~, together with (4.2). | 

After these preparations we are in a position to prove 

Lemma 4. Tmi n is a symmetric operator. 

E Proof. Let uC.~ and e>0 .  Now pick a number j~ to  such that I[~pju-ull -~. 
Since Hj is, of  course, densely defined, there exists a vCD(Hj) with l lv-ul l  <~- .  
By Lemma 3, q~jv is an element in D(Tmi,) with I[~ojv-u[I <~. Hence D(Tmi~)=-~. 
That 

( Z m i n t / , / ) )  -~ (U, ZminV ) (tl, rED(Train) ) 

holds, follows from Theorem 2. II 

Let k and Hk be again as before. 

Lemma 5. Let vC6 and suppose that there exists a number K > 0  such that 

(4.6) [(Hku, v)l ~ g([lu[l + IlVuil) (u~O(nk)). 

Then Vv exists in the sense of distributions on 0 and belongs to 9. 

Proof. Let j~ {1, ..., n} and v~.~. If  we can show the existence of  a number 
M > 0  such that 

(4.7) L(v, 0j~o)] <- MIl~ol[ (~oCC0~(f2)), 

then the assertion follows by means of  the Riesz representation theorem as in the 
last part of  the proof  of  Theorem 1. 

Let a>-~--infqk where qk is given by (4.1), and let r Since Hk+a 
is self-adjoint and strictly positive, there exists an element wCD(Hk) with 

(Hk +a)w = Oj~o. 

Taking (4.2) and (4.3) into account we conclude 

I lVwll2+~ Ilwll 2 <_- IIVwlI~+fR" (qk+a) lwl ~ 

= ((Hk + a) w, w) 

= (0i~~ w) = - (~o, 0j w) 

1 (itVwl[~ + L[~oil~) 
whence 

(llwllm+ IlVw[12) x/2 <--- I1~11. 
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Using (4.6) we therefore arrive at 

!(v, = I(v, ( k+a)w)l 

=< ( K +  lal llvll)(llwlt + ItVwlU 

_<-- V2(K+ ]a I Ilvll)(llwl?+llVwl?) 1/~ 

<= t/2 (K+ [al Ilvll)ll~oll, 

which is inequality (4.7) we set out to prove. I 

Theorem 4. (Train)* = Tmax. 

Proof of  T, oaxC(Tmin)*. Let vED(Tmax) and f:=Tmxv. Then it follows from 
Theorem 2 that 

(Tmln u, v) = (u, f )  

for all uEO(Tmin). Hence vEO((Tmi,)*) and (Tmi.)*v=f. 

Proof qf  (T~,in)*CT~x. Let vED((Tmi,)*). Furthermore, let k, ~Pk, and Hk 
be as before. From (4.5) and Lemma 3 we deduce 

(4.8) (Hku, ,:pk v) : (Tmi. q)ku, v)+(uAq~k,V)q-2(Vu'V(pk,V ) 

: (U, (Pk(Tmln)*/9 +Zl(pk" V)-[-2(Vu, VVq)k) 

for all uED(Hk). Thus 

](nku, ~okv)l <= g(llull +llVul[) (uEO(ak)) 
where 

K := max {L[ q~k(Trnin) * VII -t-II ACpk" vii, 2 [[vV~0k[I }. 

Hence V(q)kv)E~ by Lemma 5. Since k>=to was arbitrary, we obtain VvEL~o~(O ). 

This information together with Remark 4 enables us to carry out a partial 
integration in the second term on the r.h.s, of (4.8). Writing 

g := ~pk(T~i,)*v--A~p k �9 v-- 2V~ok. VvE.~, 
we have 

(Hk u, q~k v) = (u, g) 
for all uED(Hk). Thus 

(4.9) q~k V E D ((Hk)*) = D (Hk) 
and 

(4.10) Hkcp~v = g. 

Because of (4.2), (4.9) implies in particular qvELJio~(f2). (4.10) yields 

g(x) = ((L.~.)* v)(x) = (~O(x) 

for almost all xEQk, which means zvE.~. Hence vED(T,,ax). | 
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5. The Frledrichs extension of  Tmi . 

Many proofs of the essential self-adjointness of semibounded Schr6dinger 
operators ([3, 17, 18, 36, 42] for n : l ,  [6; 31, see Theorem7 below] for n=>t; 
cf. also [22, 25, 50] and [26, p. 190]) rest (sometimes in disguised form) on the existence 
of  a comparison potential Q<:q such that 

(5.1) - A u + Q u  = 0 

has positive solutions which are not square integrable near the boundary. In one 
dimension the existence of such solutions is in fact equivalent to the essential self- 
adjointness of the (semibounded) minimal operator, and it is apparently an open 
question to what extent this is also true in higher dimensions. It is Rellich's funda- 
mental paper [42] that exhibits for n =  1 most clearly the role positive solutions 
of (5.1) play both in the characterization of  the Friedrichs extension of  the minimal 
operator and in proving its essential self-adjointness. 

In [24] we gave a version of Rellich's result that is amenable to multi-dimen- 
sional generalizations, as we mentioned loc. cit., p. 513. With Theorem 4 and the 
information from Section 2 that we can perform all partial integrations we wish 
with the elements of  D(Tm,x), we have now paved the way for actually carrying 
out this generalization. We consider the case (1.14). Employing the notation 

Bs, :=  { x l x O V ,  s < lxl < t }  (0 <= s < t < oo) 

we assume without further repetition in this section that the following conditions 
are satisfied: 

(5.i) qEL~oc (R%); 

(5.ii) there exist numbers c, c 1, c2ER, r~> r t>0 ,  and functions 0 < f i e  C2((0, ra]), 
0<f~E C2([r2, ~o)) such that 

( r n - z f l ) - l ( r n - l f ; ) ' + c  I on Bo~, 

q ~= Q := c on Br,,= 
i 'Tn--l  ~c " ~ - - l [ r n - l  Ct'C i K d21 k J2] w~2 o n  Br$~. 

L e m m a  6. Tml n is bounded f rom below. 

Proof. Because of  Lemma 4 it suffices to prove 

(TmlnU, U) __-> ~lIull 2 (uEO(Tmi.))  

for some 7ER. Let 0<qEC~(R~_), uED(Tmax), and write 

S t :=  {x[xER", [ x l = t }  ( t > 0 ) .  
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(5.2) 

for  a lmost  all 
t ~  to obtain 

By virtue of  Theorem 1 and  Fubini ' s  theorem 

Z(t):= fs, rf ~ 
exists fo r  a lmost  all t > 0 .  

I t  follows f rom the factorizat ion identity 

qzu= u z r / - V  ( r f V ~ - )  

and  Theo rem 3 that  

:. 
0 < s < t < o ~ .  Now,  if uED(Tml,) we can immediately  let S - ~  0 ,  

+f.-v 
I f  we choose q such tha t  

f l  on B0, ~ 
(5.3) r / =  f2 on B,2~ 

and use (5.ii), we get 
2 2 

(5.4) (Zmln u, u) => f~  v + -~llull  ~ 
0 r  1 

where T : = m a x  {Icl, lcl[,/czl}. II 
Let  us introduce the fol lowing function,  

f ,  dt 
h~J)(r):= J r  t"-r-f~.(t) 

(7, rE[0, r~] i f j = l ;  7, r 6 [ r 2 , ~ ]  if  j = 2 ) .  

As far  as the behaviour  of  the funct ions fx, f2 f rom (5.ii) near  the endpoints  0 or  
is concerned,  the following four  cases are possible, 

case  a :  

case b:  

case c: 

case d: 

Writ ing 

(5.5) 

h0(1)(rl)< ~ ,  h ~ ) ( r 2 ) ~ ;  

htol)(ri)<~, h~)(r2) = ~ ;  

h0tl)(rl) = ~o, h~) (r2) < ~ ;  

h ~ ) ( r 0  = o% h~)(r2) = ~ .  

~p~,(t) := fs ,  lul~ (uED(Tmax); t ~ O) 

s~ A dash on a function of several variables denotes the radial derivative. 
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(we shall not distinguish notationally between equivalence classes of functions 
belonging to D(Tm,,,) and particular representatives of  these classes for which (5.5) 
is meaningful owing to Theorem 1 and Lemma 2) and 

u u 2 

we define a restriction S of  T~ax by considering (1.1) on one of  the following sub- 
spaces of  .~ := L 2 (R~_) = L ~ (R") according to the distinction just made: 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

~.(~) { U[UE~, lim r,,_t f~(r) 

0.(r) { u l u ~ ,  lim r._l/~(r) 

uluE~, Jina r.ZT~2 (r) = 0 , 

4,,,(~) ] 
0 = lim 4 

, -= r"-l f~(r) 1' 

-- 0}, 

5 .  

An analogous distinction arises in [21] in connection with the main part of the gen- 
eral Schr6dinger expression 

Theorem 5. S is equal to the Friedrichs extension (Tmin)F of T,~in. 

Proof. The assertion follows if we can prove 

1. S c S *  and 1. (Tmi.) e C S .  

I. S is densely defined since Tml n is (note Lemma 3 and TminCS by virtue of  Theo- 
rem 1). I f  therefore suffices to show that given u~D(S)  there exist sequences s j~0 ,  
tj-~ ~ such that 

(5.7) lm fin Su.Yt ~ 0  as j 
sj t a" 

u 
To this end we regard (5.2) with uED(S) and q as in (5.3). Putting v : = ~  and 

using Lemma 1 of [21] one can conclude exactly as in [24] that (it is this step which 
requires distinction between Cases a to d) 

fB Iv1~ ( 5 , 8 )  ~e2 ( p n _ l  ~a (1)]g < o o .  
Or I J 1 k "  ' * j  J 

Here (and in the sequel) ? = 0  in Cases a or b and 7E(0, rl] in Cases c or d. Hence 

(5.9) f f~lvv'[ 
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In view of  

1 
rn_,f~h(,) = ~o, 

(5.9) implies the existence of a null sequence {sj} on which Z is defined and which 
is such that 

!im f s f~ [vv'l = O. 

Thus 

(5.10) lim l)~(sj)l = O. 

The conclusion 

(5.11) lira tZ(tj)l = 0 

on an appropriate sequence {tl} tending to co can be drawn in the same way. This 
proves (5.7). 

2. We employ a well-known abstract characterization of (Tm~,) v [56, p. 317 f.]. 
Let uED((Tmin)F). Then uED((Tmin)* ). Moreover, there exists a sequence {Hj} in 
D ( T m i n )  s u c h  t h a t  

u j ~ u ,  (Tmi,(Uj--Uk),Uj--Uk)~O as j , k ~  co. 

Owing to Theorem 4 all that remains to be proved is 

U 2 U 2 
(5.12) flV--~,EL (B0rl), f zV -~EL  (B,2~) 

and possibly 

(5.13) lim ~k,(r) = 0  or lim ~,,(r) 
,~o r"-*f~(r) , ~  rn-lf~(r) 

- -0 .  

(5.12) follows from the fact that (5.4) holds good with "u"  replaced by "lAj--Uk" 
(cf. [21, p. 244]). (5.13) is a consequence of the inequality 

(5.14) i ~  

t 2 f l( ' )  s"2~f,(s) 

< f t  dr f V ~  2 

which holds for all v 6 Hl*o~ (R~_) with 0 < s < t suitably restricted. In order to convince 
/) 

ourselves of its validity 9) we mollify w = ~  and observe 

1 - n  1/2 1 - n  1/2 2 [[t ~%~(t)] -Is  ~0j~,,~(s)] I ~= fsl 
9) The hint given in [21, p. 244] is erroreous. 
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and insert 

[ ( J 0 w ) ( , r 1 6 2  = f~ (sow)'(~r drt 2 

t dz f t  f~ ~._G~(,i a ~ z"-af~(T)IVJowl2(z~) dz 

(~ESa). (5.14) now follows once we let 0~0 .  II 

Example 2 (Cf. [6]). Let c=>0, r~>0,  and suppose that 1 , qELIor satisfies 

( n - - 2 ]  2 
(5.15) q >=--(---f-) r-~--c. 

Then 

(5.16) D ((T.,i.)v) = {u lu ~D (T~.~), 

v u + n - 2  u x ~ f~ 
f ,  - _ < ~ ,  ! v . f  ~ < ~.}. o,-~ 2 r r rl= 

Indeed, (5.ii) holds with 

fl(r) := r 
t l - -  2 

2,  f 2 ( r ) : = c o n s t > O  ( r > O ) .  

We are in Case d if n~ {1, 2} and in Case c if n=>3. The additional information 
lim,_= P - " ~ , ( r ) = 0  given by Theorem 5 in the latter case is, of  course, a trivial 
consequence of u, VuEL2(B,1 ~) and therefore left out of  account in (5.16). 

Condition (5.15) does not admit of negative singularities if n=2 .  This is 
remedied in 

Then 

1 2 Example 3. Let c_->0, and assume that qELloc(R+) satisfies 

1 
if 0 <  ] x l < ~ -  

1 
if Ixl => y .  

<=, f .+  lvul <oo} 

because (5.ii) holds with 

f~(r) := (--log r)  1/2, f2(r)  := const > 0 (r > 0). 

1 
Remark 5. The T-potent ia l  itself shows that Tml n in Example 2 need not 

have a unique self-adjoint extension. Furthermore, Tmi . may fail to be bounded 
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from below if the constant - is a replaced by a smaller number. Similar 

remarks apply to Example 3. 
It should be noted that there may be functions in D((Tm~n)r) whose gradient 

is not in ~ (assume equality in (5.15) and take a function v~ C~(R~_) which vanishes 
n - - 2  

outside some ball and which behaves like Ix]---7- as Ixl ~0). So there may be can- 
cellations between the singularities of the summands of the first integral in (5.16). 
We give a criterion which tells us when such pathologies do not occur. 

Remark 6. Assume that the function f l  from (5.ii) has the additional prop- 
erty that 

( 1 / 
(5.17) fl(r)lf~(r)T=O ,r._lh~l)(r). as r ~ O  

where 7 is zero in Cases a and b and a suitable number belonging to (0, r~] in Cases c 
and d. Then 

P H 2 
D((T,,,,.).)={uluED(Tn,aO; f; u, VuCL2(Bo,); f2V-~2~L (B,,:.)}, 

f l  

and every element vED((Tmln)r) has the property Iq}I/2vELZ(Bo,1). This can be 
proved in entirely the same manner as the corresponding one-dimensional result 
[24]. (For n =  1 condition (5.17) was first introduced by Hinton [18].) 

It is clear that Remark 6 applies mutatis mutandis to the function fz occurring 
in (5.ii). 

Examples 2 and 3 Revisited. Suppose in addition to (5.i) that there exist numbers 

c=>0, 

(5.18) 

or (in case n=2)  

(5.19) 

Then 

(5.20) 

In fact, put 

171>-- and f 1 2 > - ~  

q = > t~1r-2--c 

such that 

q = > { ~ I r l ~  -z on B x0T 

on B1 
--~- ~ .  

D((rmin)A = {ulu~D(T,~ r - 1 . ,  W ~ S } ,  

f In--  2 ~211/~" 
v:=2 [ f l a + [ 2 - ~ J  ] . Then (5.18) results from (5.ii) when 

v--(n--'~) 

.fi(r) := r 
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is taken. Now, 

L ( r ) f ; ( r )  - 
v - ( n - 2 )  r ,_(,_l) and 

2 

[h~ 1) (t.)] - 1  - i ~ v _  r v] , 

so that (5.17) is indeed satisfied. Similarly one can take care of  (5.19) by setting 
1--V 1 1/2 fl(r):=(-logr)~- with v:=2(f l2+T) . - - I t  is not difficult to derive from 

(5.20) the familiar characterization 

{UIUED(Tn~a• Vu, l /]-~uE.~} if n -> 2 
(5.21) D((T,.i.)~) = {uluED(T,,j; u,,l/-(-~[uEy~; I~  [u(x)[ = 0} if n = I 

given by Friedrichs [14, 15] for the case that q is smooth outside the origin (cf. [29, 
pp. 344 ft., 349 ff.]). 

Note that any u in (5.20) has the property lim inf,_. 0 ~k,(r)=0. By means of 

(5.14) (replacing ft by a constant) we can then even conclude limr-~0 ~k.(r) = 0  if 
F 

n = l .  This accounts for the difference between n = l  and n > l  in (5.21). 

6. The essential self-adjointness o f  Tmi n 

While hypotheses (5.i), (55i) are strong enough to secure the existence of  a 
physically as well as mathematically distinguished self-adjoint restriction of Tm~ , 
(or extension of Tml,), they are too weak to guarantee that Tma. itself is self-adjoint 
(see Remark 5). We now give a sufficient condition under which this is the case. 
As before, our tool will be nothing but partial integration. As a matter of fact we 
shall indicate two proofs of  the following Theorem 6 with partial integration in 
extreme situations as their common feature. The first, which may be labelled a 
"Friedrichs-type proof" ,  relies on Theorem 5 and establishes Tm,x=(Tmi,) v. The 
second, which may be called a "Carleman-type proof" ,  is independent of the notion 
of the Friedrichs extension and shows that Tma x is a symmetric operator. In each 
case substantial information about the elements of D(T,,ax ) is obtained, from which 
the physically relevant proposition 

(6.1) Vu, ]/~'/~/E *~ (U ~O (Tmax)) 

can be derived as soon as (5.17) and its counterpart at ~ are available. 
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Theorem 6. Assume that (5.i), (5.ii) hold and that the functions fl and f~ occuring 
in (5.ii) additionally satisfy 

(6.2) s  dr = co = f ~  r"-lf~(r)dr. 

Then Train is bounded from below (by Lemma 6) and essentially self-adjoint. 
bl 

Proof Let uED(Tma~). We claim that (5.12) holds good. Put v : = ~  and 

~ov:=rl-"~v, ~v being given by (5.5). From Lemma 2 (whose assumptions are sat- 
isfied owing to Theorem 1) and (5.2), (5.3) we get 

f B 1 n--l f21t~t t (6.3) Re Tmax u �9 u = - - - o r  a~wv~ 
s t  

+ f .st {f~[Vvl2 +[q-(r"-~ fl)-~(r"-I f[)'] lvl2} 

for almost all O<s<t<r~. Now we take advantage of (6.2). Together with 

" lul" (6.4) fo r"-lf~(r)tp'(r)dr = Loq  ~:~o 

this assumption shows that there exists a null sequence {s.} with 

tp~(s,) --> 0 (nEN). 

Using (5.ii), this information enables us to infer the first statement of (5.12) from 
(6.3). It is clear that the other relation can be derived similarly. We also note 

(6.5) 0 - lira inf q~(s) = lim inf ~,,(s) 

(exploit (6.2) and (6.4) again). 
We are now at a fork. We may continue to show (5.13) for our element 

uED(Tmax) in case h~oX~(rx)< ~ or h~)(r~)< ~ holds. As a matter of fact this rela- 
tion follows immediately from (6.5), (5.12) and (5.14). u therefore belongs to the 
domain of the operator S defined by (5.6). Hence Tm~=(Tm~,) r by Theorem 5. 

We can, however, also do without the Friedrichs extension if we repeat the 
first part of the proof of Theorem 5. Indeed, Lemma 1 of [21] allows us to deduce 
(5.8) from (5.12) and (6.5). We therefore also arrive at relations (5.10) and (5.11) 
again which accomplish the proof that Tm~ x is a symmetric operator. I 

Example 2 Rerevisited (Cf. [6, 25, 50]). Suppose in addition to (5.i) that there 
is a c=>0 such that 

2 

Then Tm~. is essentially self-adjoint. This follbws from Theorem 6 when we put 
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(6.6) 

f~(r):=r -"/2, j~ ( r ) :=cons t>0  (r>0). With this choice, (5.17) holds good also, 

so that (6.1) is valid. The constant 1 -  is again best possible. 

That an essentially self-adjoint Schr6dinger operator albeit bounded from below 
can be rather weird is testified by 

Example 4. Any 1 n qELloc(R+) with 

q_->[2 (n - -1) (n-3)]r -~- -4[r6(  2 + 4  s i n T ) ]  . 1  - '  

l(" -- 2) cos + r sin 

satisfies the assumptions of Theorem 6. Choose 

f(r) : =  r 

in which case 

n - - 1  

2+sin , g(r):=f(r)  f ~  dt ( r > 0 )  
t"-lf~(t) 

q >= ( r n - l f ) - l ( r n - l f ' ) "  = ( r , - lg ) - l ( r , - lg ' ) ' .  

The conditions of Theorem 6 can therefore be fulfilled by restricting g and f to say 
(0, ~-] and [~-, ~ ) ,  respectively. 

The remarkable thing about this example is the following. Let uEC~(R~) be 
a function which vanishes outside some ball and which behaves like f([x[) as Ix[ ~ 0. 
When we choose equality in (4.6), it is clear from (6.7) that uED(T~ax). An easy 
calculation shows that Vu~ .~. Furthermore, one can convince oneself that even 

does not exist, since 
!im fBs_ (IVul  + q lull) 

lim f ~u' 
t ~ 0  , /  S r 

does not exist. For n = 1 a similar example (with heavy oscillations at infinity rather 
than at zero) was given by Moser in [42]. 

Theorem 6 is basically the L~or of the following unpublished result of 
Kato [31]. 

Theorem 7. Let 2 n qE Lloe(R+) and 

q(x) >=--q*([xl) (xER~+) 

for some q*E L~o r ((0, ~)). Suppose, there exist a K E R and a function 0 <  wE L~o c ((0, ~o)) 
with 

[ ' . l r  ~-1 wZ(r)dr = ~o = r r  r " - '  w2(r) (6.8 ) dr 
~ o 
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such that 
(6.9) rl-"(r"- lw')"  + q*w <= Kw 

holds in the sense of  distributions on (0, ~). Then 

Tmi. := ( -4  + q)l C0= (R~) 

is bounded from below with - -K  as a lower bound (by Lemma 6) 
self-adjoint. 

Proof (Kato). Let uC[R(Tmi, + K+ I)] •  
Lemma 1 we have 

(6.10) 0 = ( - A + q + K +  l )u  ~ ( - -A- -q*  + K +  l) lu[ 

in the sense of distributions on R~_. 

u(t):= t~-"f lu/ 
d S t 

clearly exists for almost all t > 0  and has the property 

and essentially 

By (1.5) and 

(6.11) 

It follows from (6.10) that 

f o  r"-aU2(r)dr < ~" 

f ?  [ - r l - " ( r " - l ~ o ' ) ' + ( - q * + K +  l)~plUr "-~ <= 0 

for all 0~=r ~)) so that 

(6.12) r l - " ( r " - ~ U ' ) ' + ( q * - K  - 1)U ->_ 0 

holds in the sense of  distributions on (0, ~). Since a nonnegative distribution is a 
measure [46, p. 29] and since q* and U are functions, (6.12) implies that ( r" - lU ' )"  
is a measure, r "-1 U' is therefore locally of bounded variation [46, p. 53]. The same 
concludion holds for r " - l w  ". Thus U' and w' are of bounded variation and so U" 
and w" are measures [46, p. 53]. Since U' and w' are functions, U and w are (equiv- 
alent to) locally absolutely continuous functions [46, p. 54]. 

From (6.9) and (6.12) we see that 

r~-"(r"-~')  ' >  (K+I-q*lV-w ~ r l - " ( r " - ~ w ' )  " v- 
w w 

Thus (r"-~(U'w - Uw'))" is a nonnegative measure and therefore 

f := r n - l ( U ' w - - U w  ') = r,,-lw2 (U)  ' 

an increasing function [46, p. 54]. 
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Unless U = 0 ,  there is a po in t  r 0 > 0  with  

As a consequence  
r 

and  
/ 

(6.14) f (ro) >= rn- lwe(r)  (U}  (r) for  a lmos t  all 

In tegra t ion  o f  (6.13) or  (6.14) gives (here we use tha t  

U(r)>~-( ) () =--- r o W  r 

U(ro)>O 

for  a lmos t  all 

and  a t  which f is defined. 

rE [ro, ~ )  

rE(O, ro]. 

u, AC oo((o, oo))) 

for  all rC[r0, ~o) or  for  all r6(0,  r0] in case f(ro)>-O or  f ( r 0 ) < 0 ,  respectively.  

In  any case, this re la t ion  taken  together  wi th  (6.11) cont rad ic t s  (6.8). Hence U = 0  

and  therefore  , = 0 .  I 
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