On approximation by translates and related
problems in function theory

Birger Faxén

1. Introduction

From Wiener’s approximation theorem we know that the set of finite linear
combinations of translates of a function f¢L(R) is dense in L(R) if and only if
its Fourier transform is never zero. What can be said if we only allow translates
J(+ —2) with 1 belonging to some fixed set A? Problems of this type have been
studied by Edwards [3], [4], Ganelius [6], Landau [8], Lénnroth [9], and Zalik [10],
[11] among others.

Several approximation problems can be transformed to problems about approxi-
mation by translates. We take the Miintz—Sz4sz theorem as an example. Consider
approximation in L(0, 1) by linear combinations of monomials x*<, where y, are
distinct numbers greater than —1. Take g€L(0,1). Under the transformation
x=exp (—exp (—1)) the expression

SIS apxte—g ()| dx

converts to

fi:o Z I—T—kﬂkf(t_log(l +ﬂk))—g(e‘e")e~e"‘—t dt

where f(t)=exp (—exp (—#)—1). Putting A,=log (1+,) this can be written

[T |3 bufe—r)—h()|dt
where A¢L(R).
We will relate the approximation properties of the translates of f to its Fourier

transform. In the example above the transform is I'(14-it)~tY2exp (—% |t|],

and the corollary to theorem 5 gives the precise answer that approximation is possible
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if and only if > exp (—|4])=-<-, thatis

(1Y
Zmln[m, 1+.uk] = oo,

We will study approximation in the spaces L(R), L2(R), and C,(R). In section 3
we consider the case f(t):O(exp (—6(2))), where 6 is even, convex, and 0(t)/¢—~
2520, o a8 t—o0, Edwards [3] contains a result on approximation in Cy(R) for the
case f(t)exp (aft)€L(R), a more restrictive hypothesis.

In section 4 we consider the case f(¢£)=0{exp (—«[t/?)), p>1. Assuming that
A satisfies a separation condition we obtain a rather sharp theorem. Zalik [10], [11],
deals with this problem with no separation condition, but the results do not involve
the same degree of precision as ours.

1 wish to thank Professor Tord Ganelius for suggesting the topic and for his
support and kind interest in my work.

2. Zeros of functions analytic in a strip

The following theorem will be important in the next section. We give the proof
at the end of this paper. By S, we denote the strip {z=x+iy: |y|<a}. The con-
vex conjugate of a convex function ¢ is defined as usual; o*(y)=sup, (xy—g(x)).

Theorem 1. Let f be analytic in the strip S,, let ¢ be an even, convex function
on (—o, ), and let 9* be its convex conjugate. Suppose that

(%) sup [fx+iy)l = exp (e (), <o
Given AER, define )* by
2 ¥ f @0 O+
A x?

dx = |A|.

If {4} is a sequence of real zeros of f (counting multiplicities) and

2=
then f=0.
Conversely, if the series converges there is a function f analytic in the strip S,,
satisfying (*), with precisely the zeros {A,}y. In particular

S log* (o)) dy < -

is a necessary and sufficient condition for the implication

i
Zexp(—'z&- Mnl) =oo=>f=0
to hold.
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3. Miintz—Szdsz type theorems

In this section A is an indexed set of real numbers. Given a function f we let
A(f) denote the set of linear combinations of functions f(- —A4y), 4,€A4. The class
of functions 0 that are even, convex, and satisfy (¢)/t-~a#=0, o, as <o is denoted
by A. Given 664 and A€ A we define A* by

3/’“ MWZW
wd1 x? )

Fourier transforms will be taken without the factor (2r)~ V2

We first treat approximation in L2
Theorem 2. Let f€L? 0€A, and suppose that F(1)#0 ae. and
|/ = exp (—0(0).

If 2, 1/Af=cc then A(f) is dense in L*.
On the other hand, if
exp (—0())/f (1)e L?

and 3, 1/Af <o then A(f) is not dense in L2,
Proof. Take gc€lL? such that g | A(f).
Put
R@) = ["_flx—A)gx)dx.
Then 4 is obviously the inverse Fourier transform of (=) g (). Since
F(=1)g(@) exp (6L

for |y|<a, itis clear that 4 can be analytically extended to S,. If we let 6, be the
largest convex minorant to 6(¢)—log (1+4¢%) the inversion formula gives

Ih(x+iy) = Co [~ exp(tlyl—6,(2)) 'lgft)i at.
Hence
3.1) h(x+iy)l = Crexp (61()),

Defining 47 with respect to 0, it easily follows that there are ¢;=>0, ¢,>0, such that
a<Af[Af<c,. This implies

3.2 DM = oo,

By the elementary theory of convex functions (6})*=0,. Obviously #(4;)=0. By

theorem 1 (3.1) and (3.2) imply %=0. Since f(t)>0 a.e. we conclude g=0 which
proves the first part of the theorem.
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Now take A0, holomorphic in S, with k(4,)=0 for all k, and

lh(x+iy)| = exp (6*().

This is possible by theorem 1. Put hy(z)=h(2)/(z2+24?). The Fourier transform
of hy is given by
ho(t) = [ ho(x)e="* dx.

The path of integration can be taken to be Im (z)=—y. One easily obiains
lho(1)] = Cexp(=(ty—0*()).
Since 8** =6, minimizing over y gives
lho (1) = Cexp (—0(2)).

Define G(t)="Hh,(1)/f(—1). The assumptions on fshow that G€L? and by Planche-
rel’s theorem G is the Fourier transform of some g¢€L2? By inversion

ho() = [ fx—2)g(x)dx.

It is clear that g 1 A(f). Since g0 this completes the proof.
In the special case f(t)=0(exp (—«t[)), the second part of theorem 2 does
not give much information. We cover this case separately.

Theorem 3. Let B be an even, positive function, concave for t=0, such that

~ B(¢
o2

P dt < oo,

Suppose fEL?, | 0] =C exp (=alt|—p(©)), €=0,a=0. If Syexp (-5 il <=,
then A(f) is not dense in L2

Proof. Put By(t)=B()+log (1+]t]) and p(x)=e*/By(¢*) for x=0. Then p
will be increasing. Define a=a+1/p(0). For z€S, the function defined by

R(z) = exp [*{GXP [%) Texp [—Z_Z)}]

has modulus less than exp (—cexp (b|x])) for some positive constants b and ¢
(x=Re (2)). Put po(x)=p(bx) and Y (x)=a+1/py(x). Let D be the region
{z=x+iy: |yl<y¥(x])} and map it conformally onto S, by ¢ such that ¢(0),
@’(0)=0. Define u,=¢(4,). By Ahlfors’ distortion theorem, [1],

A dx A dx
m=af et O) = b= [

) o TFape TOW:



On approximation by translates and related problems in function theo y 275

The last integral is less than

Lpe_dx _ 1 eyl
=) =

Hence > exp (——%]ﬂkl]<°°, and we can find g0, holomorphic in S, with

g(u)=0 and |[g[<l.
Define

h(2) = g(9(@) R(D/(z*+2a?), z€D.

Its Fourier transform will be estimated by integration along the lower boundary
of D. Suppose t=0. We substitute x=s—ix—i/p,(s) and easily verify |dx|=Cds,
for some C=0. Using the estimate for |R| and the fact that |g| is bounded we
obtain

. o t ds
3.3 h)|=C ex (—oct—- —ce’”]
(3.3) @O =Cy [, exp FXG)

sP+a?’

Choosing o such that ce® =t/p,(c), which is possible for all =M for some M=0,
we have

(3.4) +eebs =

:Po(a)

t
Do(s)
for all s=0, since at least one of the terms on the left hand side is not smaller than

the right member. Since py(6)—>o as f—oo there is M;>M such that =M,
implies py(6)>1/c, and by the definition of 6, o<log (¢)/b. Hence

log ¢
(35) 1po(@) = tlpo[ 5L = t1p1og ) = fu(o).
Using (3.4) and (3.5) in (3.3) yields
1h(t)| = Cy exp (—ar—By(2)), t= M,.
By the corresponding estimate for #=0 and suitable choice of C we obtain

exp (—alt]|— (1))
14 ’

h(®) = C
Proceeding in the same way as in the proof of theorem 2 we find that A(f) is not
dense in L2, This finishes the proof.
Corollary. Let fcL? and suppose that
Ci(?1+ D" = |/ (@) exp (alz]) = Co(lr]+ D"

Jor some n=0, m=0, a=0.
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Then A(f) is dense in L? if and only if 2, exp (——% [Ali:oo.

Remark. With f(x)=exp (~exp (—~— ] one has

L
2
f@) = F[—lz——!-it) ~ Cexp(——% ]tl)
and the corollary gives Miintz—Sz4sz theorem for L2(0, 1), if one makes the trans-

formation shown in the introduction.

We now turn to approximation in L. Here it seems that stronger conditions on
f are needed.

Theorem 4. Let fcL, 0 A, and suppose that f(t)#0 for all t, and
[Df ()| = Cexp(—0(r)).
If 31/ Ai=eo, then A(f) is dense in L.
On the other hand, if
exp (—0()/f (D€L,
and 3, 1/Af<eo, then A(f) is not dense in L.

Proof. Put F=f. First observe that F(#)=0O(exp (—0(z))): Since 0'(t)>a/2
for ¢ sufficiently large,

|F(t)| = f(: exp (—0(x)dx) = %fl: exp (—0(x))8’ (x)dx = % exp (—0(2)).

It is no restriction to assume that, for all x,

F0) = 2_17{ [ e Feyar.

It follows that f has an analytic extension to S,. We define £, and F, in the following
way
5 =flx+iy), lyl<a

F,(t) = exp (—yt) F(2).
We have to show that f,€L. The L-norm can be estimated by Carlson’s inequality.
Since f;, is the inverse Fourier transform of F, we have
I41E = Coll F Ml Fy lle-
Let 6,(¢) be the largest convex minorant to 0(¢r)—log (1+¢2).

dat
— = C,exp (261 ().

IE1E= Co [ (exp (511~0, () - =

Moreover
| E513 = llexp (= y)F’ (1) -y F,(D)]l3 = Csexp (265 (),
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since both terms can be handled as in the preceding inequality. Hence

1Al = Cyexp (61 (1),

and it is not difficult to see that the norm depends continuously on y.
Suppose that g€L>™ and g1 A(f). Put

h(z) = [fix—2)g(x)dx.

To see that 4 is holomorphic in S,, first note that %4 is continuous, then use Fubini’s
and Morera’s theorems. Since |h(x+iy)|=Csexp (05 (»)), and h(4)=0, theorem 1
gives h=0, and we conclude g=0 by Wiener’s approximation theorem.

The second part of the theorem follows by a small change in the proof of the
corresponding part in theorem 2.

Theorem S. If fcL satisfies the conditions in theorem 3 and

Syexp (5 Wl < o=,
then A(f) is not dense in L.
The proof is almost the same as for the theorem 3.
Corollary. Let f€L and suppose that for some m=0, n=0, a=0,
[Df@)| exp (alt]) = C, (I +1)", G >0,
[/l exp (t]) = Co(jt]+1)~"  Cy > 0.

Then A(f) is dense in L if and only if >, exp [—% MkI]:oo.

Remark. If we let f be as in the example in the introduction it follows, from
properties of the gamma function, that |Df(¢)|=C|t|¥? exp (—% !tl) . Hence the

corollary is applicable.
The following theorem on approximation in C, has a proof similar to the proofs
of theorems 2 and 4.

Theorem 6. Let f be the Fourier transform of g€L and let 0¢A.

(@) Suppose that |g(t)|=Cexp (—0(t)) and that g is not zero a.e. on any open
interval. If >, 1/Af=cc, then A(f) is dense in C,.

(b) Suppose g is differentiable, exp (—0(t))/g(¢)€L?, and

(3.6) |Dg/gl = M, M =0.
If 341/A5<oo, then A(f) is not dense in C,.
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Differentiability is important in (b) as the following proposition shows. Let
us call a strictly increasing sequence of positive numbers, {1,};, regular if its counting
function n(4) coincides for A=J, with a function A(4) such that #’(¢%) is convex
and increasing. A doubly infinite sequence {4,}~. will be called regular if {4,}7
is regular and A_,=—1,.

Proposition. Let f be the Fourier transform of g€l satisfying
@) |g@®)|=Cexp (—alt) for some o>=0, C=>0,
(b) the set of points where g:s left and right hand limits exist and are different
has a finite accumulation point, &,
(c) g is not zero a.e. on any open interval.
If {4}, is regular and

(3.7 2 (1) = e,
then A(f) is dense in C,.

Proof. Itis easily seen that the number of A, in the interval [x, x+1] is between
R (x)—1 and A(x+1)+1 for x=0. Take dul A(f), put FQ)=[ flx—A)du(x)

and extend F analytically to S,. Since F is uniformly bounded in, say, S,,, and
F(J,)=0, Schwartz’s lemma yields

exp (mx/o) —exp (ni, /o)

(3.8) loglFEII = 2ot |5 (o) Fexp (o)

+G,

=-—2 > exp (—-g— Ix—}.,‘l]—i—C0 =—Ch(x)—C,, (Cy, Cy=0).

Izumi and Kawata [7], have proved that a function FEL satisfying log |F(x)|=
—w(|x]), where w(e*) is convex, and

= w(x)
o 14x2

dxzoo’

has its Fourier transform in a quasi-analytic class. Now

o B'(X) , pedt
-/o 1+x2 dx = woy 14+A(2)2°

where A is the inverse function to 4. Since A is increasing it follows from (3.7), by
a comparison argument, that the integral to the right is divergent. Then, by (3.8)
and the cited theorem, F is quasi-analytic. We claim that all derivatives of F are
zero at £. This clearly would give the conclusion of the theorem. Observe that,
since Fe€L,

(3.9) EW) =g)pt) ae
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Let #; be a discontinuity point of g, as described in (b), and let ¢ tend to ¢; avoiding
points where (3.9) does not hold. Since F and 2 are continuous

A(r)lim g () = F@ty) = p) lim g (#).

But the limits are different, hence A(z)=0, so F(z,)=0. Since t,~¢ repeated
application of Rolle’s theorem shows D"F(£)=0, all n. The proof is complete.

4. Functions with rapidly decreasing transforms

The theorem in this section is stated for L2, but it has analogues in L and C,
in the same way as the theorems in section 3. The constant in front of log (r) is
sharp for p=>1, we give a simple example for p=2.

Theorem 7. Let fcL?, suppose o=>0, p=>1 andf(t):O(exp (—aft?), f()=0
a.e. Let q be the conjugate exponent to p and suppose that for some §=0

A== 96, (4,=>0)

) -4 . (7 Y)?
lngl»seyp{Zm,,qz;q— (2 31 [sm [Z]] logr}=°°-

Then A(f) is dense in L2

and

In the proof we use the following lemma.

Lemma. Suppose G is an entire function such that

lim sup = f |sin0]¢,

r—»co

log [G(re'®)|
r‘l
g>1, p=0. Suppose that for n=0, 2,>0, A2 _,—11=56=0, and G(4,)=0. If

. _ Bal. (n] ? }
q._ L = —_ = oo
h?»sgp{zln<,ln - |sin P logr R
then G=0.

Proof. Define H(z)=G(z"%) for |arg(z)|==. Then

k2
3

i0 1/4 pi(0/q)
longr(re )l — lim sup 281G

r—>oo r

lim sup

F->oo

= B(sin (6/q))" = B [sin (Ziq)]q= ¢, say.
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We now use Fuchs’ theorem concerning zeros of functions of exponential type,
[5]. Evidently H is of exponential type ¢, has zeros at the points p,=A17,
Hoi1— U, =0>0 and

. 1 c . _ cq
h%l"’s"gp{zu"<R_ﬂ_n__7T_IogR} = hr,n_,s;'lp{Zln<r }'n q——n—log r} = oo,

Hence H=0 and the lemma follows.

Proof of theorem 7. Take g¢cL? g1 A(f) and define F by convolution as
before. Then F will be entire and

g(t)de
1422

[F(x+iy)| = Cf: exp (—ar?+log(1+2)+|yl 1)
= C’exp (r?jlg( {Iylt—az?+log (1 +13)}).

If the maximum is attained at =1, then

ly] = opr?-1— Ifrz >opr?-1—1,

hence |y|4+1=apt? 1=|y| and the maximum value is
Iylt—ar?+log (1412 = a(p—1)tP+log(l 473

=o'~ 1(p—1)p~ 1yl +1D)?+o(ly)-
Hence

lim sup (M) = o'~4(p—1)p~9(|sin O))~
Now F=0 follows from the lemma since F(4,)=0, and o'~ 4(p—1)p~ig=
(po)*~2. Tt then follows that g=0 and the theorem is proved.

For p=2 it is easy to see that the constant in front of log(r) cannot be
smaller. Take e.g. F(x)=sin (x%/2) exp (—x?%/2)/x2. Using the fact that |F(z)[=
exp (»®)/(x*+»%) one obtains

[E(D)] = Cexp (—2/4)/(1+]z)).

Hence, given fcL® with |f(t)|~exp (—12/4) there is g€L? such that the con-
volution equation F=fxg is satisfied. This shows that A(f) is not dense in L?
if A={(2an)"*}7". On the other hand, by theorem 7, if c<2r and A={(cn)"?}7,
then A(f) is dense in L2
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5. Proof of theorem 1

It is no restriction to assume @ twice continuously differentiable with o”=0.
Furthermore we may assume @(y)—~o as y—u, since otherwise f is bounded and
the theorem follows from Blaschkes theorem by a transformation to the unit disc.

By definition of convex conjugate,

6.1 o*(t) = st—o(s), where ¢o'(s) =1
Differentiation of (5.1) yields

(5.2) —d‘%— o* () =s.

Put 0()=¢*(t). By (5.2) and (5.1)
e(0'() = o(s) = st—g*(t) = t8' () 0(»).

Hence, by (*) in the statement of the theorem,
(5.3) |f(x+i6°())] = exp (10°(1)—0 (1))
independently of x. Note that, by convexity, the right side increases with 7. Also
note that 6’(t)=0 for =0 and 0(¢)/f—o as t—eo,

We shall now prove the first part of theorem 1. Suppose that fis not identically
zero. We can assume f(0)20. Let D be the band-shaped domain bordered by
the four curves

(5.4) tﬂi—i— [ ; 0’ (¢") du i (e*), 1€[0, .

The domain D is illustrated in figure 1.

i — — — — —— — - o— ] —— . m— ame o m— wwe e s —

Fig. 1
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Let ¢ map S, conformally onto D, such that ¢(0), ¢’(0)=0. Then ¢ preserves
symmetry with respect to the axes. Putting 4(z)=f(¢(z)) we obtain a function
holomorphic in S,,. We will use Ahlfors’ distortion theorem [I] to show that
h(0)=0 leads to a contradiction.

Let ¥ (u) be half the length of the intersection between the line x=wu and D.
Given pcR, put A=¢(u). By the distortion theorem there is a constant k£ such
that for all A

5.5 Ty g

(70}

By symmetry it is sufficient to consider p=0, hence A=0. Define

rodr

(5.6) (L) = 0 U

Making the substitution tz—g— Ju0’(eydx and observing that, by construction,

Y (t)=0"(¢") we find ®(t)=u, hence
(5.7 &3 (u) = % f 0 0’ (e*) dx.

The function & extends continuously to S, ,. We shall estimate it at the bound-
ary. For x=0 we define x" by ¢@(x)=Re ¢ (x«l—i -g-) By the distortion theorem,
there is a constant k; such that |x"—x]<k;. Put u=@(p(x"). By (5.5) Ix'—u|<k,
hence [u—x|<k,. By the definition of u and (5.7)

hx i) = o)+t o) =7(2 [10 @ drio @),
and, by (5.3),
(5.8)

h (X_HZZE)I = exp (e¥Hhe (e Hhe) — G (e tre)).

Note also that, by the same argument, |A(x+iy)] is majorized by the right side of
(5.8), for |y|==
We now use the inequality

eXp (nﬂn/zﬂ) -1

=1 I log |h(x+iB)h(x—iB)| dx
= 2B~ exp (nx/2B) +exp (—nx/2f)
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where p,=¢*(4,) are zeros of h and O=<p<mn/2. This inequality is obtained by
transformation to the strip S, of the following well known inequality for FEH=(U),
where U is the unit disc.

1 1 pe .
log | F(0)|+ > log [;;] = - [~ _log|F* ()] a9,

with F* the radial limit function and r, e’ zeros of F.
That 4 is bounded in each strip Sp follows from

. 20
(5.10) Im @ (x+iy)| = — [¥].

To see this, observe that Im @(z) is harmonic in D, and that the inequality holds
for y=0 and y=n/2. By a Phragmén—Lindel6f argument it follows for 0=y=m/2
which is sufficient, by symmetry.

Using (5.8) we find that the right side of (5.9), for f=>n/4 say, is not larger than

cf _e_’ﬁ(e_z:"_(f_) dx = 0[5)9]‘:’< Ca.

Since the terms in the sum in (5.9) are not smaller than 2 exp (—m|u,|/2B), it follows,
by letting B tend to n/2, that > exp (—|u,)<<o. But & '(log A¥)=0(1)+]4,|
as is easily seen. Hence log A7 =0(1)+ D(|4,])=|n,] +O() and we can conclude
> 1/A% <o, which contradicts the hypothesis.

We now turn to the converse part of theorem 1.

Lemma 1. Suppose that ¢ is an even, convex function on (—a, o), such that
¢* has an analytic continuation with uniformly bounded derivative in the region |z|>R,
larg (z)] <& for some R=0, §=0.

If {A,)=., is a real sequence such that 3 1/A¥<<o then there is a function f
analytic in the strip S, such that f has precisely the zeros 2, (counting multiplicities)

and sup, | f(x+iy)|=exp (e(»)).

Proof. Let 8 be the continuation of ¢* and let D, ¢, and ¢ be defined as on
pp- 281—282. Let {=¢~': D~ S, .

The idea of the construction is to take a Blaschke product with suitably located
zeros in S, ,, compose it with { to obtain a function F defined in D with zeros 4,.
If we could continue { across the boundary of D to the strip S, we would have a
candidate for the function f. However, by the construction of D, the func-
tion { can only be extended to a region Dy=Du {w=u+iv: [u|>x,, {v|<a} for
some x,=0. This is no serious limitation, but we have to introduce an auxiliary
mapping w: S,—~D, to obtain the desired function f(z)=F(w(2)).
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We now claim

(% %) It is possible to continue { analytically to a region D, as above, in such a
way that for some M=>0 one has [{"(W)|=M in |Re (W)|=x,, |Im (W)|<a.

We prove this fact showing that 7 has the desired properties. Note that it fol-
lows that for x, sufficiently large the image of D, under { is contained in, say, the
Strip Sy

Let w map S, conformally onto Dy with w(0)=0, w'(0)>0, so that symmetry
with respect to the axes is preserved. Put ¢(2)=((w(z)) and

_ o explo(z))—exp(a (i)
(5.11) =1 5 (o) Fen (70 €S,

By the distortion theorem w(,)=4,+0(1) hence
(512 lo ()l = L)+ 0(1) = log (1) +O0(1)
where the Iast equality follows as in the proof of the first part of theorem 1. Thus
Slexp (~ lo(4,)])<==, hence the product (5.11) converges if ¢(2)€S,, a fortiori if
z€S,.

By reasons of symmetry it is sufficient to consider z=x+iy, x=0, y=0. Put
0=Im o (z)=Im ({(u4v))=Im ({(w(x+iy))). Asin (5.10) it follows that O=v=y.
We shall use the inequality

M(y—y @) if ywy=y

T
(5-13) 9""S{ 0 ity >y,

7 =
To prove (5.13) we note that if y(u)=v, then ———72—:~ =Im ({u+iv))—Im{{w+ip W)=

M—y@)=M(y—yw). If y@)>v, then e<g, hence (5.13) is trivially

satisfied.
Using the easily proved inequality
T n 3n
—Z) if === =r=1
ll—rew 4r(9 2] if Z=0=2", 0sr=l,
— =
Itre 0 if 0= egg-,

and putting r,=exp (—|Re 6(2)—a(4,)]) we get
n . T

1__,«nei9 4(9"—5)27‘” if 7:6:7

Tirem| =

(5.14)  loglf(2) = Jlog
0 if 0=6=
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With & as in (5.6) we have, by (5.12) and (5.5),

[Re (6(2))—0(4,)| = [Re{ (u+iv) ={ ()| +0(1) = | & ()~ B(4,)|+O(D).
Thus

4MC(y— —eW—dG)) if y=
(5.15) 1og|f(z)1§{ (Z w(”:gzyeipw((ul) | W—-2@,)) if y=yw

It is no restriction to assume 4,=41,,; and A,=0. We shall prove that one
can choose N such that

1
(5.16) 2 ian)=n EXP {—|PW) =P ()]} = T @ for u=z=0.

Since exp(—|®(4,)]) converges and has decreasing terms, there is a number
ny such that exp(—®(4,)=1/(8MCn) for n=z=n,, hence 4, =2,=u implies
n=exp (®(w))/(8MC). The contribution to the sum in (5.16) from the corresponding
terins therefore cannot exceed e®®/(8MC). If N =1,, the remaining part of the
sum in (5.16) is

e=PW S e WDt S, e,

which for N sufficiently large is less than exp (P ())/(8MC).

We assume that the product (5.11) is taken over indices n such that |1,j=N.
This is no restriction since the remaining zeros can be added by multiplication with
a finite product with modulus less than 1.

By (5.15) we have log|f(z)|=sup,.,(y—¥ ())exp(P()). Putting P(u)=s
we get Y (1)=0"(¢*). Hence

log | f(x+iy)l = sg)) (y—0'(eH))e = stlzuo) (y—0()+0()—10'(1))
= sup (yt—0(1)+Co = 0*(N+GC,

since 6(¢)—t0’(¢) is decreasing.
It remains to prove (* ). It is sufficient to treat the case Re (w)=0, Im (w)=0.
The boundary curve of D is given by

g(x) = 2f: 0’ (e)du+i0’'(er), x=0.

T n
The assumptions on 6 permit us to extend g analytically to the half-strip
{z =x+iv: x > log R, |y|<d}
by taking the integral along a path to z. Since 6(e*)-»a as x—oo, and |§] is

bounded, it follows by a standard argument that 6(e?)—a and % (0’ (e)~0



286 Birger Faxén

uniformly for |y|=J,<J as x—oo. It follows that, given £=0, there is a number
K such that for x>K, {y|=8,, we have

(5.17)

, 2
g (Z)—?l <&
Hence, for K large enough, g is a conformal mapping defined on

B = {z = x+iy: x>K, |y| = 8o}
and
{g(z)ED if Im(z2)=0
g(2)¢ D if Im(z)=0.

Because of (5.17) it follows that g(B) is a “road” with a certain width in the
w-plane. Hence, for some x,>0 and r=0 the half-strip

D= {w = u+tiv: u>xy—r, 0 <v<oatr}
is contained in DU g(B).
Put h(z)=¢ (g(z))—i-;i for z€ B,Im z<0. Then /& can be continuously extended

to real z€B and % takes real values for z real. By Schwarz’s reflection principle
h can be extended to all of B. We denote this extension by s. For wcg(B) define

E(w):ﬁ(g'l(w))—{—z‘%. Then £ and { coincide on g(B)n D, hence { can be con-

tinued to D’. By the construction [Im ({)| is uniformly bounded in D’. It easily
follows that |{’| is uniformly bounded in the smaller half-strip D”={w=u-+tiv:
u=>xy, O0<v<a}. The proof of lemma 1 is complete.

To remove the analyticity assumption in lemma [ we need the following result
on one-sided approximation of concave functions.

Lemma 2. Let F be an increasing, concave function defined for x=0. There is
a function G, analytic in a sector |arg z|<v, v=0, such that
(a) (G} is uniformly bounded in the sector,
(b) for x=0, G is real, increasing and concave,
(©) G(x) = F(xv),

, © dx
@) [ F)-G)—5 <.
If, in addition, F'(0)<oo, then (d") can be sharpened to

@) [T F@-60) % <.
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Proof. We assume F’(0)<eco and prove (a)—(d”). The other case is then trivial.
Further we assume that F is twice differentiable and that F(0)=0. Put
A=lim_ -, F’(x). The representation

(5.18) FG)=dx—[ :’ min (¢, x)F” (¢) dt
is easily verified by differentiation. Let p(¢t)=F(¢")e™* and P=pxh where h(t)=
n~Y2¢~", Since p is bounded it follows that P and P’ have bounded analytic exten-

sions to the strip |Im (z)|<v, v=0.
We define G in the sector so that

G(e) = eP(z+3).
Differentiation yields (a). Differentiating again and observing that F”=0 we get
e‘G”(t) = ((p”—l—p')* h) (f-f—%) — (F”a{e h) (t—f-%] = 0’

hence G is concave. Of course it is also real and increasing since F is.
Put ¢(¢t)=min (1, e™%. By (5.18)

(5.19) Py =A+f : (— F(s)) q(u—logss) ds.
By Fubini’s theorem

(5.20) P(ty=A+[ 0“’ (— F"(s))Q(t—logs) ds

where Q=gxh. Putting R(t)=['__ h(u)du we get after an elementary calculation

0(t)=¢ T R(t~2)+R(=).

A rough estimate for R shows that

S le®0=q(t=3)]dr<
and it is easy to see that Q(f)<e~'*¥%, Obviously Q(r)<1 for all ¢, hence
(5.21) (1) < q(t—7)-

By (5.19)—(5.21) e¢7'G(e")=P(t+3)=p(f)=e"'F(¢") which proves (c).
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To prove (d”) we substitute x=¢' and use Fubini’s theorem
f°° (F(x)—G(x)) & _ fm @®)—P (t+——-] dt
6 x2 - p

= [T (F@)ds- [7_(a@)-Q(t+3))dt = (f ©)—4)C < =.

Lemma 2 is proved.

To prove the converse part of theorem 1 we put F(x)=ax—g*(x) and apply
lemma 2. Putting o(x)=alx|—G(]x]) we obtain a convex function such that
lim, ., o(x)/x=a. Define ¢,(»)=0c(y). Then g, is a convex function on (—a, «)
and ¢; =¢** =0, hence, by the properties of G, g7 satisfies the analyticity condition
in lemma 1.

In order to apply lemma 1 we must show that > 1/it <o where

fl+ (x) QI(O)+1 dx= u’nl'

By (d") of lemma 2 it follows that for some c¢=0, A/ >c. Hence > 1/A;<<o
implies >’ 1/A} <oo.

Now lemma 1 gives us a function f with zeros 4, such that sup, | f(x+iy)|=
exp (01(»)). Since G(x)=F(x) we have o(x)=g*(x). Hence ¢,(y)=0*(3)=0(»)
and the proof is complete.

The last statement in theorem 1 is a consequence of a lemma, proved in [2],
and the first part of theorem 1. Put B(x)=ax—0*(x), x=0. From the cited lemma
it follows that

f ﬁ(x)

dx < oo,
if and only if
[ 10g* (e())dy < <.
Suppose that the integrals converge. Then it is not difficult to see that |4,|=
27;1 log A5+ 0(1). Hence > exp [—2—7;- ]l,,]):oo implies > 1/A% =00, which, as
we have proved, leads to f=0.

If the integrals diverge, then 1/A}=0 [exp (—5% Ilnl]] , and it is possible to

find a sequence {4,};" such that > exp (—% {l,,[):oo, but > 1/Ay<es. From

the converse part of theorem 1 it follows that there exists f=0 with zeros at A,,
satisfying (*).
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