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O. Introduction 

A distribution function is a real-valued, bounded and non-decreasing function ~O 
defined on some subinterval of the real line. The classical Stieltjes moment problem is 
defined as follows: Given a sequence (/4,)0 of real numbers, find a distribution func- 
tion ~O on [0, oo[ such that 

(0.1) # , =  fox"d$(x), n = 0 , 1 , . . . .  

We get the Hamburger moment problem if ~O is a distribution function on ] -  co, o~[ 
and (0.1) is replaced by 

(0.2) m=f'.x"d~,Cx), n = O ,  1 . . . . .  

These problems wer, studied by Stieltjes [8] and Hamburger [6], respectively. A gene- 
ral treatment of moment problems is found in [1] and [7]. See also [2]. 

A moment problem is said to be determinate if it has at most one solution ~k. 
Otherwise it is indeterminate. Carleman gave sufficient conditions for determinacy of 
the Stieltjes and Hamburger moment problems. 

Theorem (Carleman [3,5]). Let ~ , )o  be a sequence of  non-negative numbers 
satisfying 

1 *~ 
(0.3) ~ o  fl--~" = 0% where ft, = k_,inf ]/~kk. 

Then the Stieltjes problem (0.1) is determinate. 

We will consider weighted generalizations of the Carleman condition (0.3). Let 
(C,)~ be a sequence of non,negative numbers and denote by PS(C,) the following 
proposition: 
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If (Pn)O is any sequence of non-negative numbers satisfying 

(0.4) z :  co 

then the Sfieltjes problem (0.1) is determinate. 
It is the purpose of this paper to characterize the sequences (Cn)o for which 

PS(Cn) is true. This characterization is given in Theorem 1.1 in Section 1 and proved 
in Section 2. In Section 3 we give the corresponding result for the Hamburger problem. 

The author wants to acknowledge discussions with ill. lic. Erik Aldtn. 

1. Main result 

Our main result is contained in the following theorem. 

Theorem 1.1. Let (Cn) o be a sequence of  non-negative numbers. 
O) I f  

l n--1 
(1.1) sup n "  z~0 C~ = ~o, 

then PS(Cn) is false. 
(ii) l f  the supremum in (1.1) is finite then PS(Cn) is true with (0.4) replaced by 

c. 
(1.2) Z 2  = 

where ~in is defined as in (0.3). 

Define PS" (Cn) by replacing the condition (0.4) in PS(Cn) by 

cn_oo 
1 ]~n 

where ~n is defined as in (0.3). 

Corollary. The statements (a)--(c) are equivalent, 
(a) PS(Cn) is true, 
(b) PS'(Cn) is true, 
(c) the supremum in (1.1) is finite. 

The corollary is an easy consequence of Theorem 1.1 and the definition of fin. 
The proof of the first part of the theorem uses results by Carleman on quasi ana- 

lytic functions. In particular his construction of indeterminate Stieltjes problems in 
[4]. The condition (1.1) comes from Lemma 2.1 (Section 2) where it is shown to be 
equivalent to the existence of a certain non-increasing sequence of numbers. 
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Theorem 1.1 says that Carleman's theorem is sharp in a certain sense. Our next 
theorem expresses this fact in a different way. 

Theorem 1.2. Let (#,)o be a sequence of  non-negative numbers and define ft, as in 
(0.3). Then there exists (2,) 0 which generates an indeterminate Stieltjes problem and 
satisfies 

t ~  

lim ]/L//~, = 0 

i f  and vnly i f  ~ lift.< co. 

Remark. A similar result is that if (/~,)o satisfies ~,~o 1//~.= ~o then there is a 
sequence (2,)0, which also generates a determinate Stieltjes problem and satisfies 

n 

2. Proof  of  Theorems I .I  and 1.2 

We will need the following lemma in the proof of Theorem 1.1. 

Lemma 2.1. Let (a,)~ be a sequence of  non-negative numbers. Then there exists 
a non-negative and non-increasing sequence (b,)~ such that 

2 7  anb~ = co and b. < = (2.1)  

i f  and only i f  

n (2.2) sup n "  •1 ak = co. 

Proof. We first assume that (2.2) holds. Let 1 = n l < n ~ <  . . .<nk<  ... be integers 
to be specified below and define 

Ak = .~,~j<~,,,+l aj and mk = (nk+l--nk)-l" Ak, 

for k = l ,  2 . . . . .  Put bj=(nk+l--nk)-l ,m[ 1/2, nk<=j<nk+~, k = l ,  2, .... Then 

(2.3) Z ~  aj b~. = •[o 1/~-~ k and ~,[o bj = ~__,~ 1/1/-~k. 

By assumption (2.2) we can choose (nk)[ ~ such that (Ak)~ is nondecreasing and (mk)[ ~ 
increases arbitrarily fast. Then by (2.3) the sequence (bj)[ ~ has the required properties. 

Conversely assume that the supremum in (2.2) is finite and equals M and that the 
sequence (b,)~ exists. Summation by parts then gives 

. - 1  = A . b , + Z  1 Ak(bk-bg+O < - M Z ~  bk, 

where Ak=~,~ aj. Letting n tend to infinity this contradicts (2.1) and completes the 
proof of the lemma. 
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Proof of Theorem 1.1. To prove (i) we assume that (1.1) holds. We must show the 
existence of  a sequence (g,)o satisfying (0.4) and which generates an indeterminate 
Stieltjes problem. 

Lemma 2.1 implies that there exists a non-increasing sequence (b,) o of non,nega- 
tive numbers such that Z o C ,  b.= ~ and Z o b , <  co. Put M.=(1/b.)", n=0 ,  1, .... 
Then by the Denjoy--Carleman Theorem [3, p. 422] the class C{M.} is not quasi 
analytic. See also [5]. Hence there exists an infinitely differentiable function f ,  not 
identically zero, such that f~")(0)=f(")(I)=0, n=0 ,  1, ..., and [f(")(x)[<=k".M., 
n = 0 , 1  . . . .  , for all 0_<-x_<-I and some constant k. Put la.=f~ (f(")(x))2dx, for 
n =0,  1 . . . . .  Carleman [4, p. 188] proved that (/t,) o generates an indeterminate Stielt- 
jes problem. The estimate 

~n yl k 
1@-~, <= k t / ~  =-b-~-, n = l ,  2 . . . .  

implies that (0.4) holds and thereby part (i) is proved. 
To prove part (ii) assume that (1.2) holds. Summation by parts gives 

z N C .  1 N-1 1 I N 1 1/3 .  = s . ( /3 ;  MZ1T.' 

where S, = ~  Q .  It follows that the Carleman condition (0.3) is satisfied and hence 
the Stieltjes problem (0.1) is determinate. This completes the proof  of  Theorem 1.1. 

The proof  of Theorem 1.2 follows the same lines and we leave some of the details 
to the reader. 

Proof of Theorem 1.2. To prove necessity let (/~.)o be given and assume that (;t,)g* 
exists with the stated properties. Then for some constant A 

Sk 

= i n f  <_- 
k~=n 

This gives ~ 1//3,<-A . ~  1/~.< ~ by Carleman's theorem, since (2.)g* generates an 
indeterminate Stieltjes problem. 

Next we assume that ~ '  1//3, is convergent, There exists a non-negative and non- 
increasing sequence (b,) o such thatz~ o b . <  ~o and lim,~= bn"/3,= ~. Define )1//,= 
b~"; Then C{M,} is not quasi analytic and we can find an infinitely differentiable 
func t ion f  not identically zero, with the same properties as in the proof  of  Theorem 
1.1. Define 2 , = f 0  ~ (f<")(x))2dx, n=0 ,  1 . . . . .  Then (;t,)~ generates an indeterminate 
Stieltjes problem and 

n (b 
We conclude that (2,) 0 has the stated properties. Hence the condition z~'l//3.< ~ is 
also sufficient and the proof  is complete. 
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3. The Hamburger problem 

The results in Section 1 carry over to the Hamburger problem. A sutticient con- 
dition for determinacy of the Hamburger problem is ~ *  1//~,=~o, where /~,= 

g k  

infk_~ . 1/)-~2k. See [3] and [5]. For any sequence (C,) o of non-negative numbers we 
denote by PH(C,) the following proposition: 

If (.u,)~ is any sequence of real numbers satisfying 

(3.1) ~ '  35" =co 

then the Hamburger problem (0.2) is determinate. 
In complete analogy with Theorem 1.1 we have the following result. 

Theorem 3.1. Let (C~) o be a sequence of  non-negative numbers. 
(i) If(1.1) holds then PH(C.) is false. 

(ii) I f  the supremum in (1.1) is finite then PH(C.) is true with (3.1) replaced by 

z;c. 
~ k  

where P,=infk~, pl/-~2k. 

Proof. Every indeterminate Stieltjes problem can be transformed into an inde- 
terminate Hamburger problem with the same moments, see [5, p. 81] or [7, p. 19]. 
Hence the first part of the theorem follows from Theorem 1.1. The second part is 
proved analogously to part (ii) of Theorem 1.1. The proof is complete. 

Let PH'(C~) be the proposition PH(C.) with (3.1) replaced by 

where/~, is defined as in the theorem. 

Corollary. The statements (a)--tic) are equivalent, 
(a) PH(C.) is true, 
(b) PH'(C,) is true, 
(c) the supremum in (1.1) is finite. 

Also Theorem 1.2 has an obvious generalization to the Hamburger problem. 
We leave its statement and proof to the reader. 
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