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1. Introduction and statement of results 

Let R k denote the Euclidean k-space and let cpEL~(R~. The spectrum of ~o, 
denoted by a(q0, is the set of points tER k such that the function eU'Xis in the dosed 
subspace spanned by the translates of ~o in the weak-star topology of L ~176 (R k) (being 
the dual of L 1 (RR)). One says that ~0 admits spectral synthesis if ~o belongs to the 
weak-star dosed subspace spanned in L~176 k) by the functions e it'x, tEa(~o). By 
duality, this happens if and only if the condition 

(1.1) fELI(Rk), f ( t ) - - f ~ f ( x ) e - ' t ' x d x - -  0 (tEa(~0)) 

implies 

(1.2) f,~o(x) = f a~f(x-y)~o(y)dy -- 0 (xERk). 

For other equivalent ways to formulate the spectral synthesis problem as well as 
for classical motivation of the problem, the reader is referred to Benedetto [1]. 

It is well-known that for k ~ 2  (1.1) implies (1.2) if, in addition, f i s  sufficiently 
small in a neighborhood of tr(~o), e.g. if, in the 1-dimensional space, fis in the Lip- 
schitz class Lipl/~ in a neighborhood of g(~0) (see Herz [2]). On the other hand, for 
k-~3 one can find a rapidly decreasing function f a n d  a bounded function ~o on R k 
such that f(g(~0))= {0}, but f .  ~0 ~ 0 (see Schwartz [8], Reiter [6]). This suggests 
that the set of integrable functions having Lipschitz continuous Fourier transforms 
might be large enough to test the synthesizability of a given function in L ~ (Rk), at 
least for k~3.  It turns out, however, that this conjecture is false. For the group of 
integers this observation is due to Lee [5]. In the present paper we prove the same 
result on R k, for every k, by using a different idea. More precisely, we show the exis- 
tence of a function ~0EL~(R k) such that ~o does not admit spectral synthesis although 
f.r whenever fEL~(Rk), f(o'(~o))={0} and fELip~(R k) for some ~>0. This is 
a consequence of the following two theorems. 
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Theorem 1. There exists a function rp6["lg<p~_o. LP(R k) with compact spectrum 
such that q9 does not admit spectral synthesis. 

Theorem 2. Let fELI(R k) and ~pELPnL~(R k) for some p, 2<=p<=oo. Suppose 
that f(a(~o))={0} and fELipk/~_k/p(Rk). Then f.q~--O. 

In Theorem 2 we define -~=0. If p = 2  then the assumption that 
fELiPk/~_k/p(Rk)=CnLO~ k) is trivially satisfied. Hence we have the sharp result 
that every bounded function in L2(R k) admits spectral synthesis. 

As far as we know, Theorems 1 and 2 do not appear expIicitly in the literature. 
However, for the group of integers similar results have been obtained by Kahane and 
Salem [3, pp. 121--123]. (Note that Lee's Theorem 1 follows immediately from their 
results.) 

Before proving Theorems 1 and 2 we recall some simple and weU-known properties 
of the spectrum. We consider fixed 9EL ~ (R k) and fELI(Rk). 

(P1) 

(P2) 

(P3) 

(P4) 

a(q0 = {tERkl~(t) = 0 for every gELa(R k) 

which satisfies g ,  r -___ 0}. 

a ( f *  ~p) c supp (f)c~a(qJ). 

q~=f*~p if f = I  in a neighborhood of a(q~). 

supp ((fg0) ̂ ) c {t+2ltEsupp (f ) ,  2Ea(~0)}. 

2. Proof  of  Theorem 1 

It is known (see Richards [7]) that there exists a real-valued function gEA(T) 
with the following properties: for some 6 >0, 

(2.1) C(x) dof sup l(e,Xg)^ (j)[ = O(e_~ IgT~) ' xER, Ixl -~o,  
j E z  

(2.2) g~ cl{g2hlhEA (r)}. 

One continuous linear functional on A(T), which separates g from the dosed ideal 
generated by g~, is of the form 

�9 1 2/t h--  (a',h)d~ ff_ , x ( ~ f ~  h(t)expQxg(t))dt)dx. 

Let Z be the characteristic function of the interval 1 a ( -~- ,  ~-). Define 

f(x) =Z~=_~,(--n) x(x--n), 

~k(x) = ~ = - . o  (5', ei ')X(x-n) (xER). 
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Then, dearly, fELl(R). We will show that 

(2.3) r  LP(R), 

(2.4) f(tr(~k)) = {(3}, 

(2.5) f * ~  # 0. 

To prove (2.3) pick any p~(2, r It follows from Parseval's formula that 

2,~'ffi _.. I(eiX0^ (n)l p _~ C(x)p -2. 

On the other hand, by H61der's inequality 

[(Y, e'*t)l <= f~_,~ Ixl [(e'X')^ ( -n ) l  dx 

< rx  p l l p  = [f?.~ (i~x~)qdx]'/q[f?. ( ,+x ') ' l (e"  0 ^ ( - n ) ,  dx] , 

where 1 + 1 =  1. Hence 
P q 

IIr = Z~'ffi_~, f2+__~lr = { Z~'=_.. 1(3', ef~t)l p 

<- c f ? ~  (1 + x2) , 2 , 7 = - .  I(e'~a) ̂  ( -  n)IPdx <= c f "  (1 +x2) p C(x) p-' dx 

for some constant c>O. Therefore IIr co by (2.1). Moreover 

I1r ~= f~_~ Ixl C(x)dx <oo. 
So (2.3) holds. 

To prove (2.4) it suffices to show that f.f*O=-O. Pick any xER and thenan 
integer m such that Ix-m[ <=~. Then 

:v,+o,> " ' S"_',, = Zn=_ ~. (6, e "t) s f . f ( x -  y -  n) dy 

S..o /fi, ei~, ~ f~/8 ~ Its 
= - , , : - - "  ' ,., -,,s [ Z s : _ . e ( - s ) f _ , l s f ( x - y - n - j - u ) d u J  dy 

= - - , , s  r ' 8  dy2,7:_, rzT=_, e"> 
f~lS 118 

= .' -~lS [f-~ls X ( x - y - u - m ) d u ]  dy (6", g'eimt). 

But (3", g2e~'nt)=O for every integer m. Hence f . f . $ =  0 and therefore f(#($))= 
{0} by (P1). 
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Condition (2.5) follows from (2.2), since 

f *  r (0) 1 ~ . e , . t )  ._~ <(~ �9 = -~ Z n  =- ~. g (n) (6 ', = g) 

and therefore f .  if(0) #0. 
Let (K,),E N be the Fej6r kernd on R (Katznelson [4, p. 124]). Then f . K n , ~ k # O  

for some n. For such an n define ~0=K..~. Then, by (P2), we obtain the claimed 
result on the line. The general case now follows easily if we define 

F(xx . . . .  , xk) = f ( x O  ... f(xk), 

. . . ,  x O  = o , ( x 3  . . .  o , ( x P .  

This completes the proof of Theorem 1. 

3. Proof of Theorem 2 

We will use the standard Beurling--Pollard argument (of. Herz [2, p. 710]). 
Pick a rapidly decreasing function ~/ on R k such that ~/(0)= 1 and supp (~) 

is contained in the open unit ball. Define ~/B(x)=~/(ex), ~pB=(2n)--k018~O) ̂ (~>0). 
If a(cp) is compact then it follows from (P3) and (P4) that ~o is continuous and ~o~ 
vanishes in the set {tERk[infac~(~,)It--2]-->~}. Hence 

S. q3(x)----- l im+SRJ(X- -y ) r l ' ( y )q~ (y )dy  

= ? m+LS(O e"'at, 

where H, denotes the set {t~Rt]0<infa~(~,) [ t -A l<e} .  An application of Schwa=' 
inequality and Plancherel's theorem shows that 

IS* q, (x)l <-- lim,.0+inf(2=) -~ '  (S,,o lf(t)[= dO*Z= llq=q'll=. 

Let 09 be the modulus of continuity of f ,  defined by co(e)=suPl,_al___ , If(t)-f(a)l. 
Let IHA denote the measure of H.. Then, by H61der's inequality, 

(3.1) If* ~o (x)l ~- lira inf(2r0-~/' co(e)l<l*t=~/,-~/= Ilqll=p,(p-=~ ll~ollp. 

But co(e)=O(e kl=-tlp) and IH, l=o(1) (e+0+) .  Hence it follows from (3.1)that 
f *  ~0 _---- 0. 

If tr(q~) is not compact we convolve q~ with the Fej& kernel on R k, apply the 
above argument to these convolutions and then pass to the limit. This completes the 
proof of Theorem 2. 
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4. Remarks 

Theorems 1 and 2 show that the set {fELI(R ~) If6 U ,>o Lip~ (Rk)} is not large 
enough to test the synthesizability of a given function in L'*(Rk). For the group of 
integers, Lee [5, Th. 2] obtained an even stronger result. Unfortunately, it seems that 
our method cannot be generalized to prove Lee's Theorem 2 on the line. However, 
we are able to improve our results somewhat. Let cp be as in our Theorem 2. Moreover, 
assume that a(~o) is compact and satisfies II1~1 =o(~ ~ for some a->0. Let f6LI(R k) 
and assume that, for some constants a, c>0 ,  If( t) l  =<c infa~,c~,) i t - A :  in a neighbor- 
hood of a(cp). Then the proof of Theorem 2 above shows that f .  cp = 0 if 

a k k 
(4.1) a+2--~ p 2 => 0. 

Now let q~ be as in Theorem 1. It follows from (4.1) that f ,  cp = 0 whenever f6LI(R k) 
and If( t ) l  <=c inf~c,r It-;t l" in a neighborhood of a(~p), for any a>0 .  

We mention finally that lhe inequality (4.1) is sharp for every k->3. This can be 
deduced from Schwartz' example [8]. We omit the details. 
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