A note on Lipschitz functions
and spectral synthesis

Ismo Sedig

1. Introduction and statement of results

Let R* denote the Euclidean k-space and let @€ L=(R¥. The spectrum of ¢,
denoted by o(g), is the set of points f€R* such that the function e *is in the closed
subspace spanned by the translates of ¢ in the weak-star topology of L= (R") (being
the dual of L(RY)). One says that ¢ admits spectral synthesis if ¢ belongs to the
weak-star closed subspace spanned in L= (R*) by the functions €*'*, t€o(p). By
duality, this happens if and only if the condition

(B)) fel'®), fO= [, f)e=dx=0 (t€a(9))
implies
(1.2 fro@= [ fx=»e()dy=0 (xR

For other equivalent ways to formulate the spectral synthesis problem as well as
for classical motivation of the problem, the reader is referred to Benedetto [1].

It is well-known that for k=2 (1.1) implies (1.2) if, in addition, f'is sufficiently
small in a neighborhood of (), e.g. if, in the 1-dimensional space, £ is in the Lip-
schitz class Lip,;, in a neighborhood of o(¢) (see Herz [2]). On the other hand, for
k=3 one can find a rapidly decreasing function f and a bounded function ¢ on R*
such that f(a(@))={0}, but f*¢:0 (see Schwartz [8], Reiter [6]). This suggests
that the set of integrable functions having Lipschitz continuous Fourier transforms
might be large enough to test the synthesizability of a given function in L= (R¥), at
least for k=3. It turns out, however, that this conjecture is false. For the group of
integers this observation is due to Lee [5]. In the present paper we prove the same
result on R¥, for every &, by using a different idea. More precisely, we show the exis-
tence of a function @€ L=(R¥) such that ¢ does not admit spectral synthesis although
Sf*@=0 whenever fcLY(R¥), f (o(¢))={0} and feLip, (R for some a>0. This is
a consequence of the following two theorems.
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Theorem 1. There exists a function Q€[ \o<p=eo LP(R% with compact spectrum
such that ¢ does not admit spectral synthesis.

Theorem 2. Let f¢INRY and @cLPnL>(RY) for some p, 2=p=-cc. Suppose
that f(c(0))={0} and feLipys—1;,(R¥). Then fxo=0.

In Theorem 2 we define —=0. If p=2 then the assumption that
FeLipys—1/,(RY=CL=(R") is trivially satisfied. Hence we have the sharp result
that every bounded function in Z2(R¥) admits spectral synthesis.

As far as we know, Theorems 1 and 2 do not appear explicitly in the literature.
However, for the group of integers similar results have been obtained by Kahane and
Salem [3, pp. 121—123]. (Note that Lee’s Theorem 1 follows immediately from their
results.)

Before proving Theorems 1 and 2 we recall some simple and well-known properties
of the spectrum. We consider fixed ¢€L=(R¥) and feL'(R¥).

(4] c(p) = {tcR¥g() =0 for every gcL'(RY)
which satisfies g% ¢ =0}.

(P2) a(f*9) < supp ()na().

(P3) p=f%¢ if f=1 in a neighborhood of ().

(P4) supp ((f9)") < {t+Alz€supp (f), A€o (@)}-

2. Proof of Theorem 1

It is known (see Richards [7]) that there exists a real-valued function g€ A4(T)
with the following properties: for some §=0,

@.1) Cln & sup ()" () = 0(e=1™),  x€R, Ix] =,
J
(2.2) gt cl{gthlhc A(T)}.

One continuous linear functional on 4(T), which separates g from the closed ideal
generated by g2 is of the form

b (& ByE [ ie ix [3‘% f 02” k() exp (ixg (D)) d{] dx.
Let y be the characteristic function of the interval (—%—, %) Define
J =27 __ g(—mxx—n),
Y =2 __ (&, e™y(x—n) (x€R).
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Then, clearly, f¢ L'(R). We will show that

(2.3) V€N e pmo L2 R,
2.4 fle@)) = {0},
(2.5) S*y #0.

To prove (2.3) pick any p€(2, ). It follows from Parseval’s formula that
2 M) (m))? = Clx)P2
On the other hand, by Holder’s inequality
146", €™ = [~ _Ix|[(e™0)" (—n)l dx

[/ (o) o] “ [ i compan] o,

A

1 1
where —+4-—=1. Hence
p 49

n+1f2

"W”p = Z’n:_w f"_1/2 N/(x)lpdx — ,1_2’:’:_& |<5I, eint)lp
= cf:’ (1+x3P Z'Zl_wl(eixg)" (—n)|Pdx = cj':o (1+x2? C(x)P-2dx
for some constant ¢>0. Therefore |||, << by (2.1). Moreover

Wle= [ _IxlC(x)dx <o
So (2.3) holds.
To prove (2.4) it suffices to show that f*f*y=0. Pick any x€R and thenan
integer m such that |x—m|=%. Then

PRV = Sr_ e [0 fafe—y—n)dy
=3 e [ (S gD [ fe—y=n—j-u)du]dy

-1/8

P Gy —u—mya]dy S5 (S 8D En+i-m)] ¢, &)

—-1/8 -1/8

" [flls x(x—y—u—m) du] dy (&, gte'™),

~1/8 -1/8

But (&, g?¢"™)=0 for every integer m. Hence fxf*y =0 and therefore f(a(¥))=
{0} by (PI).
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Condition (2.5) follows from (2.2), since

YO =337 __sm)(¥, ey =15 g)

and therefore f#*y/(0)>0.

Let (K,),cn be the Fejér kernel on R (Katznelson [4, p. 124]). Then f* K, %y #0
for some n. For such an n define ¢=K, *y. Then, by (P2), we obtain the claimed
result on the line. The general case now follows easily if we define

F(xh erey xk) =f(x1) "‘f(xk)s
D(x15 o0y Xp) = @(x1) ... 0 (%)
This completes the proof of Theorem 1.

3. Proof of Theerem 2

We will use the standard Beurling—Pollard argument (cf, Herz [2, p. 710]).

Pick a rapidly decreasing function # on R* such that 5(0)=1 and supp (%)
is contained in the open unit ball. Define #,(x)=#(ex), ¢,=Qn)"*(",9)" (¢=0).
If o(¢) is compact then it follows from (P3) and (P4) that ¢ is continuous and ¢,
vanishes in the set {t€RMinf,¢,,, [t—4|=¢}. Hence

Fro@ = lim [ f—»n0)eG)dy

- i [, 00

where H, denotes the set {t¢R*|0<infy¢,,, |t—4|<e}. An application of Schwarz’
inequality and Plancherel’s theorem shows that

/%@ @) =liminf @)=H2( f 17O di)* In.0l,.

Let o be the modulus of continuity of £, defined by (&) =SupPye—zy=, | FO—-F ).
Let | H,| denote the measure of H,. Then, by Hélder’s inequality,

GD  If*e@| = liminf 2n) R o) HEH2 4 1y 0],

But w(e)=0("*-*?) and |H,=0(1) (¢~0+). Hence it follows from (3.1) that
Sf*p=0.

If (@) is not compact we convolve ¢ with the Fejér kernel on R¥, apply the
above argument to these convolutions and then pass to the limit. This completes the
proof of Theorem 2.
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4. Remarks

Theorems 1 and 2 show that the set {f¢ L}(R") | fe U,_, Lip, (R} is not large
enough to test the synthesizability of a given function in L=(R*). For the group of
integers, Lee [3, Th. 2] obtained an even stronger result. Unfortunately, it seems that
our method cannot be generalized to prove Lee’s Theorem 2 on the line. However,
we are able to improve our results somewhat. Let ¢ be as in our Theorem 2. Moreover,
assume that o (¢) is compact and satisfies |H,|=o0(e*) for some a=0. Let fc L1(R"
and assume that, for some constants «, ¢=0, | f'(¢)]=c inf 1€a(p) [t—4|" in a neighbor-
hood of ¢(¢). Then the proof of Theorem 2 above shows that fx¢ =0 if

a k k
(4. l) o 7 ? - 7 =
Now let ¢ be as in Theorem 1. It follows from (4.1) that f* ¢ =0 whenever f¢ L'(R¥)
and [f(t)|=c inf; e, (q [t —A|* in a neighborhood of ¢(¢), for any a=0.

We mention finally that the inequality (4.1) is sharp for every k=3. This can be
deduced from Schwartz’ example [8). We omiit the details.
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