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1. Introduction 

This paper is related to the propagation of conormal regularity for solutions to 
semilinear wave equations, i.e. to the interaction of progressing waves for such an 
equation. One result of this type is proved here, for the wave operator in three di- 
mensional space-time, concerning propagation of singularities associated to two or 
more characteristic surfaces, simply tangent along a common fine. This special case 
is analysed in considerable detail for several reasons but principally to check the 
usefulness of  different notions of regularity at such a singular variety. 

Three distinct spaces of  iterated regularity associated to this geometry are investi- 
gated. The first space is the space of Lagrangian distributions associated to the two 
conormal bundles of the surfaces, which intersect in codimension one because of the 
simple tangency. This is the type of space which arises in the purely linear case, for 
example the fundamental solution of the wave operator itself is of this type (micro- 
locally) near the tip of the characteristic cone [MU]. This space would generally be 
denoted 

(1. l) I (R a, N'H1 u N'H2), 

where/-/1 and / /2  are the two surfaces. However it is not possible to prove propaga- 
tion results in it for the semifinear equations considered here because it is not multi- 
plicative, 

The next space considered is the space of iterated regularity with respect to 
the vector fields tangent to the surfaces; this is denoted 

(1.2) I(R 3,//1 t_J H~) 

x The first author received partial support from National Science Foundation grant mcs 
8306271 and the second was a National Science Foundation Post-Doctoral Fellow during the 
preparation of this manuscript. 
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and was defined in [MR]. Propagation for this space was proved in [MR]. One of 
the principal objectives of this paper is to show that this space is simply not good 
enough for the general question of the propagation of conormality, a claim made 
specific below. 

The third type of space can also be defined using the notation of [MR], namely 
as the sum 

(1.3) J (R  3, Hlt_l/-/~) = I(R 3, H 1 u L ) + I ( R  3, H ~ u L ) ,  L = HlnH~,  

where L is the line of intersection. A propagation result, of the usual type, is proved 
for this space, the chief novelty being in the proof that the bounded elements of 
J ( R  z, 1tl u 1t2) form a (C ~) ring. This is demonstrated by blowing up the intersection 
line and defining the space in terms of the properties of the lifts of functions. It is 
shown below that: 

(1.4) I(R 3, N* Hl t2 N* H2) c J (R z, Hi  td H2) c I(R z, Hl t2 H2) 

with both inclusions proper, so the propagation result is finer than that proved in 
[MR]. 

To illustrate why the space (1.3) should be preferred to the somewhat larger 
space (1.2) consider the following rather typical general question of the propagation 
of singularities. In R 8 with coordinates t, x, y let P be the standard wave operator: 

(1.5) p - - n  ~- r~' r~2 

Let E2cR z be an open set P-convex with respect to F=f2n{t=0} ,  i.e. such that 
the Cauchy problem for Pu = 0 can be uniquely solved in 12 for arbitrary Cauchy 
data on F. Consider then a real-valued function 

(1.6) u~ L~176 

meaning that u is locally bounded in f2, which satisfies the semilinear equation 

(1.7) P u = f ( . , u )  in f2, f C C ~ ( O •  

It is readily shown that the Cauchy data of u on F is then well-defined. 

(1.8) y,u =D~UlrEC-o~ i = O, 1. 

Suppose that this Cauchy data is conormal with respect to a finite set of points, 
. . . . .  zN}:  

(1.9) yiuE N T~ R ), i = 0,1. Zk=l  I ( r ,  * 

The question then is: Where is u singular? This is of course intricately related to 
how it is singular. An example due to M. Beals [Be] shows that if the hypothesis 
(1.9) is weakened to simply: 

(1.10) sing supp (y, u) = L, 
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then the singular support of u can fill out all of the solid propagation cones with 
poles in L, i.e. each of the cones: 

(1.11) C(5) = {z = (t,x,y)Ef2; I(x, y ) - ( 2 ,  Y)l <- I t -~l ,  5 = (i, ~, Y)}, 

for 5EL (so 3=0). This is in contrast to the linear case, i.e. when f i n  (1.5) is linear 
in u, where the singular support of u is confined to the conic surfaces: 

(1.12) E(5) = {z = (t, x, y)Ef2; [(x, y ) - ( 2 ,  Y)I = I t -~l} = OC(5), 

for 5EL. 
Let E+(5) be the forward part of E(5) in (1.12), i.e. the part lying in {t>=t}. 

Define sets Lo=L, L1, L=, and so on, successively by: 

(1.13) 

Lk+l =LkwU{M = E+ (zx)nE+ (z2)nE+ (zz); M is finite and zl, z~, zsEL~}, 

by adding to LR the sets of triple intersections of the cones based in Lk. The non- 
empty intersections of three cones either consists of one or two points or else, if the 
three poles are colinear, part of a line. Thus the finiteness condition just excludes 
this last ease. The general conjecture for the solution of the semilinear equation is: 

(1.14) (1.5)-(1.9) =~ sing supps(u)n {t => 0} = Uz~Lk E+ (z), 

where the singular support is computed relative to some finite Sobolev space, He(Q), 
and k depends on s. The reason for the restriction to finite order singularities is that: 

(1.15) L** = U*~=ILk need not be discrete in f2. 

A simple example illustrating this, with seven initial points is given in w 7 below. 
Ignoring certain niceties about the rather weak assumption (1.7), a priori, on 

the regularity of u, discussed elsewhere, the conjecture (1.14), is known from the 
work of Bony, [Bo2], for the case N_<-2, and from [MR] and [Bo3] in ease N = 3  
(and also for certain cases with N_->4). In these cases L~ is finite and one can take 
the usual singular support with respect to C*" functions in (1.14), with k = 0  for 
N - 2 ,  k = l  for N = 3 :  

(1.16) (1.5)-(1.9), N = 3 =~ sing supp (u) = UzeLxE+ (z). 

The case N = 3  is illustrated in Figure 1 (at the end of the paper). Now LI \Lo  
consists of  at most one point (depending on I2), the triple interaction point, p. Notice 
the geometry of the four cones after the triple interaction, the new cone E+(p) meets 
each of the old cones in a single (half-) line, along which the cones are simply tangent 
to each other. This is the geometry introduced above and with which this paper is 
primarily concerned. 
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In particular, the results of either [MR] or [Bo3] show that (under some addition- 
al regularity hypotheses which can be removed) the solution u lies in the space 
(1.2) near each of these lines of contact between cones, this of course implies in 
particular the bound on the singular support (1.16). To understand the inadequacy 
of this regularity, say for the ease N = 4 ,  consider what happens after the first triple 
interaction. It is readily seen that, if f2=R 3, generically (in the placement of the 
initial points) there must be a further interaction of the wave on two tangent cones 
with a single cone from a fourth initial point, see Figure 2. According to the conjec- 
ture (1.14) this should produce extra singularities only on the cone E+(q) through 
the point of intersection of the three cones involved. Since the triple interaction pro- 
duces singularities in all directions at q it is not reasonable to expect that extra sin- 
gularities produced by such an interaction should be iteratively more regular than 
those produced at the triple point p;  although it is certainly the case that the Sobolev 
regularity is higher, hence the finite union in (1.14). Examining the geometry after 
this interaction, see Figure 3, there are now three cones tangent along a common 
line, hence simply tangent in pairs. The best iterative regularity one could expect 
from the results of [MR] or [Bo3] would be that u lies in some ring containing the 
sum of the three rings (1.2) associated to the three pairs of these hypersurfaces. 

Now the difficulty is that, first this sum is not a ring and, secondly, there is no 
obvious (P-propagative) ring containing it with the property that the wavefront set 
of its elements is contained in the union of the conormal bundles to all the C ~~ 
manifolds involved (including the line). This will prevent the proof of (1.14) since 
such singularities must propagate off the characteristic surfaces on the right side. 
Of course further interactions will make this problem even worse. 

The advantage of the space (1.3) is that the corresponding sum of spaces, when 
there are three, or more, surfaces (cones in this case) tangent along a line, is a ring. 
Thus the singularities corresponding to such a space, whilst growing more numerous, 
are not worse. 

It should be emphasised that (1.14) is not proved here. Nor is it shown that 
after the triple interaction point, p, the solution u to (1.5)--(1.9) actuaUy has the 
regularity (1.3). It is shown that this regularity, if present, persists until further 
interaction occurs. In fact the same result holds for the space associated to any finite 
number of tangent cones. Thus if it can be shown that the regularity (1.3) is present 
after triple interaction then it will be relatively straightforward to demonstrate (1.14) 
in full. We hope to examine this problem elsewhere, in particular to show that the 
solution u to (1.5)--(1.9) always lies in the space defined by an extension of the defini- 
tion, by blow up, of (1.3). It is this definition which shows the space to be a ring. 

In brief the discussion below proceeds as follows. In w 2 the first blow up of a 
pair of fines in R z, simply tangent at a point is considered; in w 3 the second blow up 
is carried out. This leads to the proof in ~4 that the space (1.3) is a ring. In w 5 condi- 
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tions on such a ring enough to prove the type of propagation theorem mentioned 
above are given. These are verified in w 6 for the case corresponding to (1.3), i.e. two 
simply tangent characteristic surfaces, and the case of higher multiplicity also men- 
tioned above. Finally in w 7 the example of seven points for which the set of triple 
interactions is not discrete is given. 

Most of this analysis was carried out while the authors were visiting the Mittag- 
Leffler Institute. The stimulating atmosphere there was especially appreciated and 
useful conversations with Jean-Michel Bony and Jeff. Rauch are gratefuly acknow- 
ledged, as is the warm hospitality and constructive criticism offered by Lars H6r- 
mander. Subsequent conversations with Nils Dencker and Rafe Mazzeo were also 
helpful. 

2. First blow up 

For the reasons outlined in the introduction we proceed directly to consider the 
blow up of two curves, in R s, simply tangent at the point of blow up. Since we shall 
only analyse simple examples below we shall not give a coordinate independent 
definition of normal blow up but simply observe that such a definition does indeed 
exist, in the C = category, so the operation of introduction of polar coordinates around 
a submanifold makes more invariant sense than might at first be supposed. 

Consider two embedded C = plane curves, K1, Ks tangent at the origin, but only 
simply so, that is having different curvature at 0. Then local coordinates can be 
introduced, near 0, x, y with respect to which: 

(2.1)  & = {y  = 0},  & = {y = xS}. 

Since all considerations here will be local it can be freely assumed that (2.1) holds 
globally. We wish to consider various operators related to K1 and Ks and their 
behaviour in singular coordinates. 

The first set of operators consists of the space of vector fields tangent to K, and 
vanishing at 0. Following the notation of [MR] we introduce the C "~ variety; 

(2.2) .Ydx = K, ~ {0} = {K1\{0}, {0}}. 

A C'* variety is just a (locally) finite collection of disjoint submanifolds with dosed 
union, the main use being to define the space Y'(ag), for any Coo variety ag', of  
C ~ vector fields tangent to each dement of . /& Now, q/'(a~ e) is always a C ~ module 
and Lie algebra, so we consider a set of generators (as a C ~ module). 

(2.3) q/'(oU~) is generated by yDy, yD~,, xD,,. 

Similarly one finds easily that:  

(2.4) ~e'(of'~) is generated by (y-xS)Da,, (y-x2)D~,, x(Dx+2xDa,). 
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Next consider the full C ~ variety defined by the two curves: 

(2.5) a'Cd= ffd't t2 ~ = Kjt2K~, 

where the join of  two C** varieties is defined in [MR]. From (2.3) and (2.4), 

(2.6) . / r ( ~ )  is generated by 2yDy+xD~, (y-x~)Dx. 

The spaces considered in [MR] are defined by iterated regularity with respect to such 
Lie algebras of  vector fields. Thus, 

(2.7) IkL~(R ~, .~a) = {uEL~(R~); .k,'(~)yu : L~(R~)V j _<_ k} 

and we also use the compact notation: 

(2.8) L~176 LZ(R ~, ~ )  = L~~ ~, .~). 

Here and below all these are local, i.e. uEL~(R 2) means that 

fl,ul~dx<oo, V q~E C~'(R~). 

As well as the spaces LoOIkL~(R ~, .r for ~ = ~ ,  ~ or ~ we shall also 
consider the space of  Lagrangian distributions associated to the two Lagrangians 
N*Kt, N'K2. Set 

(2.9) A = N*KtwN*K~ 

and then define all(A) c 7J~(RZ), the space of  properly supported pseudodifferential 
operators on R z, as the subspace of  those operators characteristic on A: 

(2.10) AEd/(A)  ~,  o't(A) = 0 on a .  

Now, rig(A) is clearly a Lie algebra, since A is a finite union of  Lagrangians, and a 
7~~ As such, 

(2.11) all(A) is generated by 2yh~+xO~,, (y-xZ)Dx,Dx(Dx+2xOy). ~;a(R~). 

Now if we define IkL2(R ~, A) by replacing 3e'(X') by de(A) in (2.7), then it follows 
easily that 

(2.12) uEIkL~(R ~, A)*:~ A~AiaA~ uEL2(R~), h+i+j  <- k, 

where At, ~/2 and .4 3 are the first two generators in (2.1 I) and A 3 = E .  Dx(D,,+2xDy), 
with EE ~'i,'t(R 2) elliptic. A similar remark applies to the other spaces IkL~(R ~, ~) .  

Now let B~:Xx=[0, *o)•  t *R z, be standard polar coordinates: 

(2.13) Bt(r, 0) = ( rcos  0, r sin 0), 

where OER/2rrZ. Writing K for the support of  ~f', i.e. K=KxuKa, note that: 

(2.14) B;a(K) = F~uF~uRx, 
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where 

(2.15) F1 = {sin 0 = 0}, F2 = {sin 0 -  r cos 2 0 = 0}, R1 = {r = 0}. 

We divide this up into C ~ varieties. Let L I =  {r=0,  sin 0=0} be the intersection 
of  each pair of  these curves in the manifold with boundary X1. Then set 

(2.16) ~ = {Fx\LI,  R~\L~, LI), ~2 = {F2\L~, R~\L1,  La], 

and 

(2.17) ~ ' =  {F1NL1, F2NL1, RINL1, LI}. 

(2.18) Lemma. Under B1 each element of  3~(~) ,  3e'()f'2) and Sr(3~r) lifts to 
a C ~ vectorfield on X1 and these lifts span, respectively, 3r "lr(~r~) and ~(~r) .  

Proof. Since any C = function lifts under a C = map such as B~, it suffices to check 
first that each of  the generators in (2.3) and (2.4) lifts. Now, away from {r=0}, 

(2.19) Dx= Bl,[cosO.Dr-r-lsinODo], Dy= Bl,[sinOD,+r-lcosODo] 

so the vector fields in (2.3) lift to 

(2.20) 

sin 20. rD, + sin 0 cos ODo, sin 0 cos 0- rD, -- sin s OD o, cos z 0. rD, -- sin 0 cos ODo. 

These vector fields generate the same C~(XO module as 

(2.21) rD, and sin0D0, 

which is just the Lie algebra ~ ( ~ ) .  A similar argument applies to the lift of  ~ ( ~ ) .  
Direct computation of  the lifts of  the vector fields in (2.6) gives 

(2.22) (1+sin  s O)rDr+sin 0 cos ODo, (sin 0 - r  cos ~ 0)(cos 0. r D , - s i n  ODe). 

Near r =0 ,  i.e. R1, but  away from sin 0=0 ,  these span the same C = module as 
rD, and D o. Near sin 0=0,  introduce as new C ~ coordinates in X~, 

(2.23) t = sin 0/cos 0 = y/x, and x. 

Then the vector fields in (2.22) locaUy span the same C~(X~)-module as 

(2.24) xDx + tDt , ( t -  x) [xD~ - tDt]. 

These two vector fields are easily seen to generate the Lie algebra ~r proving 
the lemma. 

Let co,=rdrdO be the polar measure on ,ti1, and denote by L~ the space of  
locally square-integrable functions with respect to this measure. Thus: 

(2.25) B~': L2(R 2) ~ L2(Xl), 

is an isomorphism. From Lemma 2.18 we have directly: 
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(2.26) Corollary. B* is an isomorphism, for  all kCN, on the spaces: 

(2.27) 

B~: Ik L • (R ~, .~) ~-~ Ik L~ (X1, #),  for (d/f, # )  = (~ ,  ~'), (a~f',, ~ ) ,  i = 1, 2. 

Next we wish to examine the lift to/I1 of the space IkLZ(R 2, A). Since this is a 
subspace of IkL2(R ~, A r) it follows from Corollary 2.26 that 

(2.28) B* (IkL~(R 2, A)) c IkL~(X 1, ~ ) .  

This gives good control of the lift away from the intersecting curves, i.e. away from 
L1. In view of this we consider simpler local coordinates on X1 near L1 given in (2.23). 
In terms of these coordinates consider the lift of the differential operator Q, involved 
in (2.11): 

(2.29) Q = Dx (Dx + 2xDy). 

Thus if Q1 is defined by B~(Qv)=QI(B~v),  for all vEC~(R ~) then 

(2.30) Q1 = x -1" ( x D x -  tD,) . x -~ . ( x h ~ -  tD, + xD,). 

In [Me] certain Sobolev spaces, H~(XI),  associated to the boundary of a manifold 
with boundary, such as/'1, are discussed. In particular in the coordinates x, t, where 
the boundary is defined by x=0,  the space of negative integral order can be defined 
simply: 

(2.31) vEH~P(XOnearL1 ~=~v = v0+Z~=l(XD~,)iDf-fv~, v~EL~(Xa), 

where L~(X1) is the space of square-integrable functions with respect to the measure 
x -  1 dx dt. Thus, 

(2.32) L~(XO = x~/ZL2(XI) = xL~(XO, near L~. 

In terms of the desingularized form of Q: 

(2.33) a~ = ( xD~- tDt ) ( xD~- tD ,  +xD,)  

we can bound the behaviour of the lift of lkL~(R 2, A). 

(2.34) Lemma. I f  q96C~~ has support in the coordinate neighbourhood o f  x 
and t in (2.23) then any uE lkL2(R 2, A) satisfies the regularity conditions: 

(2.35) (a~)pW~Wg * P < q~(Blu)C~,t= 1 xl-lnb-z(X'l), provided p + i + j  = k. 

where W1 and W~ are the lifts to X1 o f  the first two vector fields in (2.11). 

Proof. The original definition (2.12) of IkL~(R ~, A) can be written in terms of Q 
and the first two vector fields, V~ and V~ in (2.11): 

(2.36) Q~ provided p + i + j  <= k. 
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Now the Sobolev space of negative order can be expressed in terms of differential 
operators as: 

(2.37) vEH-P(R z) ~:~ w -- ~l~l~_pD~v,,, v~EL2(R2). 

Clearly then from (2.32), 

v E H - ' ( R  2) ::* xPcp. B* vEx-~ Hg-P(XO. 

Applying this to (2.36) it follows that ~P p i j �9 x (Qx) WaW2~o(B~u) is in the space on the 
right in (2.35). To get (2.35) from this is only a matter of a simple commutation argu- 
ment to pass from x~pQ~ to (Q~)O. 

3. Second blow up 

After one blowing up the tangency between the curves in (2.1) has been removed. 
However there is still multiplicity in the sense that three lines pass through each of 
the two points of L1. It is therefore convenient to blow up, again, around these 
points, i.e. polar coordinates will be introduced there. The doubly blown up manifold, 
X2 can then be visualized as the exterior of four circles, each of radius 2, centred at 
the points ( +  1, + 1). The new blow down map will be written: 

(3.1) B~: X~ ~ XI, B = B~.Ba: X2-~ R2. 

In X~ there are four distinguished (non-connected) curves. First there are the 
original curves lifted: 

(3.2) G , =  c] [B-I(K,~L)] ---- cl[B~I(Fi~L1)], i .: 1,2. 

Next there are the two radial lines, the new one and the old one lifted to the new 
space. 

(3.3) R3 = B~-I(L1), R, = cl [B~ 1 (R~\L~)]. 

From these curves we form three C ~ varieties, the lifts to Yz of ~ ,  ~22, and ~ ' ,  
although the concept of  the lift of a C ~ variety will not be defined in general here: 

(3.4) ~ i = G i ~ R 2 ~ R z ,  f~=GLd~G~uRa~AR3=~ltJ~2, i = 1 , 2 ,  

i.e. as the collections consisting of  each of  the appropriate curves, minus the inter- 
section with the others together with these intersections. Let o~ be the lift to Xa 
of co~, i.e. the lift under B of the original Lebesgue measure, and again denote by 
L~(X2) the space of functions locally square integrable with respect to it: 

(3.5) B*: L 2 (R ~) --~ Lg (X~). 

The first result on lifting to X~ is a special case of a general result on the lifting under 
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blow down maps of  the conormal functions associated to a variety with normal 
crossings: the variety stays normal and the functions stay conormal. 

(3.6) Lemma. Under the double blow down map: 

(3.7) B*: IkL~(R ~, ~ff,)~-~ IkL~(Xz, f#,). 

Proof. As in Corollary 2.26 this is just a matter of  examining the analogue of  
Lemma 2.18, i.e. checking that the vector fields in (2.21) lift under Bz to span ~(fr 
as a C = (X2) module. Away from L1, X2 is diffeomorphic to X1 so we can consider 
generators of  ~ ( ~ )  in the simpler form arising in the coordinates (2.23), i.e. 

(3.8) xD~ and tD t, in x _->0, t~R. 

Under the polar coordinates which implement B~, nearby 

(3.9) B 2 ( ~ , t p ) = ( O c o s ~ , ~ s i n ~ ) = ( x , t ) ,  0~=0, ~C[--1/2Tc, 1/Zz~], 

these lift to 

(3.10) cos2~.oD~-cos~psin~Do and sin2~.~Do+cos~sin~gD~,. 

It is readily seen that these two vector fields span ~(~41) locally. This completes the 
proof  of  the Lemma, since the demonstration for if2 is completely parallel. 

Now consider the space analogous to that in (1.3) for the C = variety composed 
of  the two simply tangent lines/s and K2: 

(3.11) A L ~ (R ~, S )  = x~ L" (R ~, ~ )  + xk L ~ (R ~, ~),  

and then the subspace of  bounded elements: 

(3.12) L%/kL~(R 2, ~#) = L~(R~)nJkL2(R ~, )'I). 

We shall not attempt here to explain this notation in a wider context, but simply 
note the important consequence of  Lemma 3.6. 

(3.13) Proposition. Each space L=JkL~(R 2, JY~) in (3.12), where J~f is the C ~ 
variety composed o f  two curves in the plane simply tangent at a point, is a C ~ algebra, 
i.e. with ~ = L ~ J k L 2 ( R  2, Jr'), 

(3.14) FCC=(R2• u~E~ i = 1 . . . . .  n =~ F ( . ,  ul, ..., u,,)E~. 

Proof. It is shown in [MR] that the space L=(X2)c~IkL~(X~., ~) is a C ~ algebra. 
Thus to prove the Proposition it suffices to show that: 

(3.15) B*: JkL~(R ~, o~f) ~ I~L~(Xz, ~), 

since B*: L~ According to Lemma 3.6, and the definition (3.11) of  
J~ L z (R ~, fit'), (3.15) is equivalent to 

(3:16) I~L~(Xz, f#) = I~L~(Xz, fgO+ I~Ln( ~, f#z). 
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It is only necessary to verify (3.16) locally near each point of  X2, since all the spaces 
are local. Near any given point of X 2 either N = N1 or fr = fg2 locally, in the sense 
flint their component manifolds coincide locally. Corresponding to the first case 
we have: 

(3.17) ~(f~)=~c"(fr  and ~t~(f#~)c~c"(f#~) locally. 

Clearly (3.17) implies ~he converse inclusion for the iterated spaces, i.e. 

(3.I8) IkL~(X~, f~) = I~L~(X2, fgO, IkL~(-,V2, f~) c I~L~(~a, ff,) locally�9 

This of course implies (3.16) near such points. The other case in (3.17) has the same 
consequence so (3.16) holds everywhere and the Proposition is proved. 

This is the main result needed from this section for the proof of  the propagation 
theorem described in the Introduction. We shall however proceed to analyse the other 
spaces introduced above. In particular we shall prove the inclusions analogous to 
(1.4) (and essentially implying those) in R =, i.e. 

(3.19) IkLe(R ~, A) c dkL2(R ~, j~r) c IkL2(R ~, J%'~) 

defined in (2.12), (3.11) and (2.8) respectively. Then we shall discuss the deficiencies 
of  the last space in (3.19), or rather its superfluity. 

Consider then (3.19). The second inclusion is  trivial from the definition (3.1 !) 
and the obvious inclusions 

(3.20) .r c ~//'(v4fl), ~/r(o~f') c ~/(~r 

SimilarIy it follows directly from the definitions of  the spaces that the first is contained 
in the last. The first inclusion, amounting to a splitting of  the first space, is not quite 
so obvious so it will be considered in detail. 

(3.21) Lemma. Under B, the double polar blow down map (3.3), the space defined 
in (2.12) lifts into that in (3.11): 

(3.22) B*: IkL2(R 2, A) ~ IkL~(X2, ~). 

Proof. First recall (2.28). Using this away from L1 we certainly have (3.22) away 
from the new radial line Ra, since B~ is a diffeomorphism there. Thus it suffices 
to consider the lift to X2 of  functions on X~ of the form w=q~B2u, where uE 
IgL2(R 2, A) and 9 has support near L1. Lemma 2.34 gives information on the regu- 
larity of such functions, w, and whilst (2.35) is strictly weaker than the conditmn 
UEIkL~(R 2, A) we shall only use the estimates (2.35) to prove (3.22). 

So suppose that w, with support sufficiently near L~, satisfies these estimates, 

(3.23) (Q~)'W~'W2JwET_,~=ox " ~Hg"(X~), for p + i + j  <= k. 

Then to analyse B~w we need to consider the lifts to X2 of the operators Q[, W~ and 
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W2 under (3.9), since near the other component of L1 the same argument can be 
applied. Instead of the coordinates 0 and ~k of  (3.9) it is convenient, as in w 2, to use 
projective coordinates in more restricted subsets of  X~. Thus, the desired conclusion: 

(3.24) B*w~ IkL~(X 2, re) 

is again local on X~. 
We first examine (3.24) near R2c~Rz=Lz, away from the curves G1 and Gz. 

Here the obvious coordinates are: 

(3.25) t and s = x/t  

in terms of the coordinates (2.23) on X1. Writing * ' - * B~ (QIw)-Q2(B 2 w), it is then 
easily seen that: 

(3.26) Q, = (2sD~-tDt)(2sD,-tDt +stD,-s2D,),  Bz,(tD~) = W1. 

and no use will be made of  Wz here. Choosing /z~ C~(X2) to have small support 
near s = t = 0 ,  the inclusions (3.23) imply, for p+i<=k, 

(3.27) a~(tDt)'(wx) =~+~=o(tDt)J(sDs)tej,, ej, EL~(Xz), wl = pB*(w). 

Now we claim that this impfies in turn, 

(3.28) (tDt)i(sDs)~w~EL~(X2), for i+ j  ~-- k. 

Certainly this implies (3.24) locally near R~nRz. Now deducing (3.28) from (3.27) 
is really a matter of  elliptic regularity estimates, and can be easily accompfished in a 
calculus of  pseudodifferential operators on a manifold with corner, generalizing that 
in [Me]; since this is not available in the literature we give an elementary derivation. 
Decompose Q~ as: 

(3.29) Q2 = Q~+s(2sDs-tDt) tDt+E,  Q~ = (1 -1 /2 s ) (2 sD , - tD t )  ~, 

where E is a first order operator in sDs and tD t. A simple commutation argument 
shows first that (3.27) remains true if Q2 is replaced by Q 2 - E .  Now it is also the 
case that (3.27) remains valid with Q2 replaced by Q~, even though the difference is 
not of  first order. This is simply because the difference has a factor tDt in it, so can 
be controlled inductively by the estimates (3.27). Thus 

(3.30) (2sD~-tDt)2P(tDt)~wl p+i 1 t 2 X. =Zj+t=o(sD~) (tDt) ejt, e~t6Ls( 2), p + i  k. 

Now we can also assume that wl and all the ejt have supports in [0, 1]• 1]. These 
conditions can be reduced to constant coefficient estimates by introducing logarithmic 
coordinates, S = l o g  (s), T= log  (t), since then: 

Dr = tDt, D s = sD,. 
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In the local coordinates s, t the measure co 2 is equivalent to s~t ds dt, which becomes 
exponential in S and T. Thus (3.30) becomes: 

(3.31) (2Ds-DT)2pD~ (~1) C H -p (R2), p + i ~ k, 

where kI(S, T)=eS+(lmrwl(s, t). Here, H-P(R 2) is the usual global Sobolev space. 
The combination of operators in (3.31) is elliptic, so this implies 

(3.32) kxCHk(R2). 

Translating back to the coordinates s and t this is just (3.28). 
This has taken care of one small part of (3.24), so that now we can cut B~w 

off to have support away from R~c~R3. In particular we shall now use the other pro- 
jective coordinates 

(3.33) x and z = t/x, 

in place of (3.25). Then assume that vCC~(X2) has support in the corresponding 
coordinate patch and consider the regularity of 

w2 = vB*w. 

Now, we need to translate (3.23) to regularity for w2, in particular to examine the 
operators Q~, W1 and W 2 in the coordinates (3.33). Once again we can ignore W2 
and simply note that Q1 and W1 lift to 

(3.34) Qz = [xD,-2zDz] [xD~+2(1 -z)Dz], xD~. 

Thus we can assume that w2 satisfies the iterated regularity conditions: 

(3.35) Q~(xDj w~Ex-3/2H~-P([O, oo) XR) i + p  ~- k. 

To deduce (3.24) from this we could proceed in an elementary fashion as in the 
discussion of wl above, but since there is only a simple boundary present the analysis 
can be shortened by using the calculus of [Me]. In particular setting i=k in (3.35) 
gives the regularity: 

(3.36) (XDx)kW~CX-~/2L~(X~) [=L~(X2) locally], 

so we need only consider microlocal regularity, with respect to totally characteristic 
operators, in the region where xDx is not elliptic. Consider the first factor in Q3, 
in (3.34). Away from GI= {z=0}, this is elliptic where xDx is not, so a simple com- 
mutation argument using (3.35), with i=0 ,  implies that 

(3.37) (XDx+Z(1-z)Dz)Pw2Cx-3/2L](Xz), p <= k, in Izl > e .  

The corresponding estimates intermediate between (3.37) and (3.36) can be obtained 
in the the same way, or follow in any case by interpolation. Together, xD~ and 
(1-z)D~ generate, locally ~e'(ff), so (3.24) holds away from G1. Of course, using 
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the other factor in Q3 the same conclusion holds near G1 so this completes the proof 
of the proposition. 

We remark again that the inclusion (1.4) is easily obtained from this proposition 
and the discussion above. This result also indicates strongly that the space in the 
centre in (1.4) is the smallest "reasonable" space, J, which contains the ("very linear") 
space of Lagrangian functions and yet has the property that its bounded elements 
(i.e. of J)  form a ring. To emphasize this point we shall conclude this section by 
examining the largest space IkL~(R z, Yg) further, in terms of the blow up, and show 
why it does not deserve to be thought of as consisting of the "conormal" functions 
associated to the C = variety ~ .  

(3.38) Proposition. Let ~ be the Lie algebra of  all C ~ vector fields on X~ 
which are tangent to ~ and vanish at the part R3 of the boundary, then 

(3.39) B*: Ik L~(R ~, ~ff) ~ I,,L~(X2, ~tU). 

Proof. In view of Lemma 2.18, to prove this result it is only necessary to show 
that: 
(3.40) ~ is spanned by the B2-1ifts of ~/'(~-). 

We leave the details to the interested reader, except to note the following simple, 
but crucial lemma which shows the effect of the multiplicity in the variety ~ ,  the 
three lines passing through a point. 

(3.41) Lemma. Let U be a real vector space of  dimension two. I f  LI, L2 and Lz 
are three distinct lines in U then the space of  linear vector fields tangent to all three is 
one dimensional. 

Proof. Choose a basis of U such that LI=  {x=0}, L~= {y=0} in the induced 
coordinates, so L3 = {ax=by}, a, br Changing variable from x to ax/b reduces 
L3 to {x=y}. Now it is obvious that the only linear vector field tangent to all three 
lines is xDx +yDy, the radial vector field. This is true of course in any basis. 

(3.42) Remark. Proposition 3.38 shows that the elements of lkL2(R ~, ~ )  lifted 
to X~ only have iterated regularity with respect to the Lie algebra "/r To make clear 
how weak this is note that any harmonic function near the part of the boundary, 
R3, where ~ differs from ~(f9), which is in L 2 actually has such iterated regularity. 
Thus an element of IL2(R 2, ,~ff) can "include" an arbitrary function in some finite 
Sobolev space on a line, the corresponding Dirichlet data, This is not what one expects 
of a conormal function. More particularly, although these "hidden" singularities 
do not affect the wavefront set, which is contained in the conormal variety, they can 
be expected to eventually release a shower of singularities on further interaction in 
the types of hyperbolic problems of basic interest here. The J-type spaces do not 
have these complicating features. 
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4. Tangent surfaces 

Suppose t ha t / / 1  and/-/2 are two C ~ surfaces in R 3 which are simply tangent 
along a common line: 

(4-.1) t t l nH2  = L is a C ~ line 

and 

(4.2) in any plane transversal to L , / / 1  and H 2 are simply tangent curves. 

Using the results of w167 2 & 3 we can easily analyse the three spaces associated to such 
a pair of surfaces in the Introduction, and prove the inclusions (1.4). In fact the C *~ 
varieties formed f rom/ /1  and / /2  are all products of those examined above. 

(4.3) Lemma. I f  i l l  and H~ satisfy (4.1) and (4.2) near pC L then there are local 
coordinates x, y, z with p as the origin with respect to which: 

(4.4) //1 --= {y -- 0}, H~ = {y = x2}. 

Proof. By the implicit function theorem/-/1 can be brought to the normal form 
in (4.4). Since it is a curve in / /1 ,  L can simultaneosly be brought to the appropriate 
normal form {x=y=0}.  Then/ /2  must have as a defining function 

h2 = y - a x  2, a = a(x,  z) r  

changing the sign of y if  necessary it can be assumed that a>0 ,  then replacing y 

by y / g a  gives the desired form. 
Now let ~,o~g2 and a f  be the three C = varieties defined from these two sur- 

faces by: 
(4.5) OUF~ = {HI~L,  L}, 2/F2 = { H ~ L ,  L}, o~t~ ~ z .  

Using the definition (2.7), with L 2 (R9 replaced by L ~ (R 8) etc., this allows us to associa- 
te with ~ the spaces of iterated regularity IkL2(R 3, :4e) and 

(4.6) JkL2(R ~, ~ )  - Ik L~(R 3, #6)+ /k  L~ (R n, Y:z). 

Similarly set A=N*I t lwN*H~,  define J # ( A ) c  7J~(R 3) by (2.10) and IkL2(R 3, A) 
by using the same definition with d / (A)  as Lie algebra of operators. 

(4.7) Proposition. I f  HI and H2 are two C ~ surfaces in R 3 satisfying (4.1) and 
(4.2) then for  an), kEN,  

(4.8) IkL~(R 3, A ) =  jkL2(R 3, 9 f )  c IkL2(R z, out'), A = N * H I U N * H , .  

Moreover, 

(4.9) L~Jk L~(R 3, 3f )  = L=(R3)C~JkL~(R ~, 3 f )  = L=Ik(R ~, o~r L=IkL2(R s, M',) 

is a C ~ algebra. 
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Proof Most of this proposition follows, essentially trivially, from the discussion 
above of the case of two tangent curves. All the spaces are obviously local and 
coordinate independent, so one can work with the model case (4.4). The extra variable 
z is then a parameter in all the blowing up operations, for example a basis of ~ ( ~ )  
is given by (2.3) and D z. The results proved above on the lifts of these space carry 
through essentially unchanged, so (4.8) follows easily from the analogue of Lemma 
3.21 and the characterization of the lift of JkL2(R ~, ~ )  to R• i.e. the analogue of 
(3.15). In fact the remainder of the proposition also follows from this discussion, 
since not only is L=JkL2(R 3, ~ )  shown to be a ring, as in Proposition 3.13, but the 
characterization of the lift under the double blow up implies the equality in (4.9). 

5. P-propagafivealgebras 

Despite some danger of confusion from excessive terminology we shall consider 
here the notion of a P-propagative algebra, including in this way natural properties 
which give iterative regularity for solutions of (1.7). Thus throughout we shall 
suppose that P is a strictly hyperbolic operator of second order in some open set f2, 
in R" or a manifold, which is P-convex with respect to the subsets (in the past) 

f2~ = {pEg2; t(o) < 6}, for some time function t and 0 < 6 < ~. 

Thus we assume that the continuation form of the Cauchy problem is well-posed in f2: 

(5.1) if f~C-~(O) and f =  0 in I2 e, there exists a unique uEC-~(f2) 

with u = 0  in f2~ and P u = f  in f2. 

Now, let J,(O) be a filtered space of locally square-integrable functions on f2: 

(5.2) L2(f2) = J0(f2) D Jl(f2) D...  D Jk(f2) D... D J(f2) = 0~=0 Jk(f2) �9 

We require that solving the linear wave equation increase the iterative regularity 
of  these spaces, in the sense that: 

(5.3) Pu =fCJk_l(f2), u~Jk_l(f2), u = f =  0 in f2~ =~ uCJk(f2). 

We shall also require each of the subspaces of locally bounded functions to be a ring, 
or more precisely: 

(5.4) L•Jk(f2) = L~_(f2)C~Jk(I2) is a C = algebra, 

i.e. each of these satisfies (3.14) in place of ~ .  It is also convenient to be able to local- 
ize with cutoff functions, so all these spaces should be C=(f2)-modules 

(5.5) c = ( a )  �9 sk(a) c 1k(a)Vk~N. 
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(5.6) Definition. A filtered space of  functions Jk(f2) as in (5.2) which satisfies 
(5.3), (5.4) and (5.5) will be called a P-propagative algebra. 

Of course the main reason to introduce this definition is just to have explicit 
conditions on Jk(f2) which imply iterative regularity for solution to (1.7). 

(5.7) Proposition. I f  uEL*~ satisfies 

(5.8) Pu = f ( . ,  u )+g ,  in f2, 

with P a strictly hyperbolic operator o f  second order, f2 P-convex with respect to f2~ 
as above, then 

(5.9) u = 0 in f2~, gEJk_l(f2) =~ UEJk(f2). 

Proof. This is immediate for k = 0 ,  since Jo(O)=L2(I2). Then (5.3) and (5.4) 
allow an inductive argument. Indeed, if uEJp_l(O) then (5.4) shows that 

(5.10) f ( . ,  u)+gEJv_t(f2), p <= k, 

so (5.3), and the fact that the function in (5.10) vanishes in f2o implies that uEJo(f2). 
This completes the proof  of  the proposition. 

Many examples of  P-propagative algebras were given in [MR]. We recall some 
of the terminology from there and add a little more. The rings (hence algebras) 
considered in [MR] are of  the form IkL~(f2, f/') for some Lie algebra of C ~ vector 
fields on f2. 

(5.11) Definition. A Lie algebra and C ~ module of  vector fields, f/', is said to 
be P-complete if: 
(5.12) [e, f/'] c ~0. p + ~ t .  f / -+  ~1, 

where ~ vm= ~'(g2) is the space of  properly supported pseudodifferential operators 
of  order m on g2. 

(5.13) Proposition. I f  f/" is a P-complete, locally finitely generated Coo module 
and Lie algebra o f  C ~ vector fields on f2, P-convex with respect to f2~, then 

(5.14) Jk(f2) = IkL~(f2, ~ )  

defines a P-propagative algebra. 

Proof. See [MR]. 

In [MR] some sufficient conditions are given on the Lie algebra ~(a~f ') arising 
from tangency to a C ~~ variety, .,~, in order that it be P-complete. The conormal 
variety of any C ~ variety is the set of common zeros of  all the vector fields tangent 
to it: 

(5.15) N * ~ f ' =  {eET*f~; trx(V) = 0 at e, VVE'F(oft')}. 
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Then or162 is said to be characteristic for P if it satisfies an intersection condition with 
the characteristic variety, Z =  {p=0}, of P: 

(5.16) N*~VYcaS = U;=IAj, Aj closed conic Lagrangian in T'f2. 

It is said to be characteristically complete if in addition: 

(5.17) ,4/'(~'t ~ = { a ~ C = ( Z ) ;  a = 0 on N*2/g} is generated by ~h(C/'(Jt')), 

as a C~(~ )  module. 

(5.18) Proposition. I f  ;IF is a C ~ variety of finite type, i.e. such that r162 ~) is 
locally finitely generated, and is characteristically complete for P then ~(;4 ~ is 
P-complete. 

Proof See [MR]. 

Now the difference between some of the spaces considered here and those consid- 
ered in [MR] is that they involve sums of spaces to which Proposition 5.18 applies. 
For these we use the following simple observation. 

(5.19) Proposition. I f  J~i)((2) i=1, ..., N, define P-propagative algebras on a 
fixed domain f2 satisfying (5.1) and the sum 

1~(n) = Z  N .rf)(n) 
i = l  

(5.20) 

is such that: 

(5.21) L=I~ (n) = L- (n) ~ i~ (n) = Z~ L ~ (n)~ J~') (n) 

is a C" algebra, then Jk(f2) is a P-propagative algebra. 

Proof Obviously Jk(f2) satisfies (5.5), and by assumption (5.4) also holds, so it 
is only necessary to check the P-propagative condition (5.3). Thus, suppose that 
UEJk-l(O) vanishes in 12~, for some 0<6<60 and has Pu=fEJ~_l(f2). From the 
definition, (5.20) of the Jk(f2), 

(5.22) N f~C ikt_l (f2)" f =Z i=l f i ,  (0 

Now in (5.22) the f / do  not necessarily vanish in ~2~. However we can always choose a 
function e(t) which is C =, is identically 1 on supp (f) ,  and vanishes in some 12~,, 
with 0 < 6 ' <  6. Multiplying through (5.22) by this function, and using the assumption 
that all the Spaces are C = modules ensures that the f~ do vanish in the past. Then, 
using the P-convexity of f2, solve each equation Pu f=fi, with ui=O in g2n,. By 
assumption then uiEJ(kO(f2), and by the uniqueness of the solution to the Cauchy 
problem, 

u = Z,~=~ u, Es~(n) .  
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6. Tangent characteristic surfaces 

We now proceed to apply the analysis, by blowing up, of  conormal spaces in 
w167 2--4 and the propagation results of w 6 to deduce a result on the propagation of 
conormality. 

Let g2 c R z be an open set and suppose that 

(6.1) HI, H~ . . . . .  HN c 

are closed embedded C ~ surfaces. Let L c K2 be an embedded C ~ line and suppose 
that: 

(6.2) H~c~Hj = L for i, jC {1 . . . . .  N}, i # j.  

We shall further assume that (4.2) holds locally near L for each pair: 

(6.3) H~ and H i are simply tangent along L, i # j .  

Then it is natural, following the ideas of w 4, to associate to the C ~ variety: 

.Ve = {L, H i \ L ,  i =  1 . . . .  , N}  

(6.5) ALe(a, j~) = Z  N I~L~(a, .g,), 
i=1 

where ~ =  {L, H i \ L  } are the individual C ~ varieties. In particular 

(6.6) ~#e=U ~r ~r i = l  

(6.7) Theorem. I f  P is a strictly hyperbolic linear partial differential operator oo 
second order with C ~ coefficients in an open set g / c  R a, which is P-convex with 
respect to ~2~ in the sense that (5.1) holds, and 1tl . . . .  , H~ are closed embedded char- 
acteristic surfaces as in (6.1)--(6.3) and f~C~(g2, R) then i f  J~(~2)=JkL2(g2, :g~) 
is defined by (6.5): 

(6.8) 

P u =  f ( . , u ) + g  in g2, uEL~(g2), gEJk(f2), u = O  in g2a==~ uEJk+l(f2), VkEN.  

Proof. According to Proposition 5.7 it is enough to show that the Jk(~) form 
a P-propagative algebra in the sense of Definition 5.6. Applying Proposition 5.19 
this in turn follows once it is demonstrated that L~Jk(g2) is a C ~ ring with a decom- 
position (5.20, where J(ki)(g2)=IkL~(~2, ~ ) ,  and that each of these spaces is P- 
propagative. The proof therefore follows directly from the next two propositions, 
once it is noted that a line such as L along which two characteristic surfaces are 
tangent must be a bicharacteristic. 

(6.4) 

the space of functions: 
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(6.9) Proposition. Let 1tl, 112 . . . .  , H N be a finite collection of closed embedded 
C ~ surfaces in f 2 c R  z satisfying (6.1)--(6.3). Then, in terms of (6.5), L~Jk(f2)= 
LO~(12)c~Jk(s is a C ~ ring and 

(6.10) 

Proof. This is a generalization of  Proposition 4.7, in particular (4.9), which 
gives the case N - 2 .  Now (6.10) is certainly true if it is true locally near each point 
of  L. As in the proof  of  Proposition 4.7 local coordinates can be introduced so that 
the analogue of  (4.4): 
(6.11) Hi = {y, 0}, H~ = {y = x 2} 

holds for any prearranged pair, i r  of indices. Thus if F is the double blow down, 
i.e. polar coordinate, map discussed in w167 2, 3, then: 

(6.12) F*IkL~(f2, a~fr) = IkL~(X~, ~r), r = i , j  

where f#, is the lifted variety in X2. 
Of  course one cannot expect to arrange a simple form such as (4.4) to hold 

simultaneously for all the H,.  Observe, however, that to reduce any other pair to 
normal form, starting from (6.11), only a diffeomorphism fixing each point of  L is 
required (see the proof  of Lemma 4.3). Such a diffeomorphism lifts under F to a 
diffeomorphism of X2. This can be seen directly, or alternatively it follows from 
the observation that any C = vector field which vanishes at L lifts to a C ~ vector 
field on X~ tangent to the fibres of  R1 and R2. Since a diffeomorphism fixing L can 
be obtained by integration of a time-dependent vector field of this type the lifting 
follows by functoriality. Thus, (6.12) actually holds with a fixed F for all r =  1, ..., N 
simultaneously. Since the lifted surfaces G, are all disjoint the argument of  Proposi- 
tion 4.7, which only relies on this disjointness, gives (6.10) and shows that L=Jk(~2) 
is a C ~ ring as desired. 

(6.13) Proposition. Let P be a strictly hyperbolic operator of  second order in 
I2 c R a, H a characteristic surface for P and L c H a bicharacteristic line, then the 
space I~L2(f2, t " ) ,  where ~ = {L, H \ L } ,  is a P-propagative algebra. 

Proof. This is a result of  the type discussed in more detail in [MR]. In suitable 
local coordinates, 

(6.13) H =  { y = 0 } ,  L----- { x = y = 0 } ,  

so ~/'(3ff) has three local generators: 

(6.14) yDy, xD~, yD~ span ~e'(o~(f) locally. 
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In particular it follows readily that ~Y" is complete, i.e. 0"1('~ (*)~)) spans, as a C~(T*Y2) - 
module, the space of functions on T'f2 vanishing on N*,Yf, see (5.15). 

Now the characteristic variety, ~ ,  of a wave operator such as P, is a strictly 
convex cone in each fibre. As N*L is a plane in each fibre, this and the assumption 
that L is a bicharacteristic for P means that the Hamilton vector field of the symbol 
of P is tangent to N*L at ,~, so N*L is tangent to z~, hence is of dimension two. 
Now, the Hamilton vector field is also tangent to N*H and is non-radial, from which 
it follows that: 

(6.15) N * L n  Z = N * H n N * L .  

Thus the C = variety o~ is characteristic for P in the sense of (5.16). Since N*L meets 
N*H cleanly, in codimension one, it also follows easily from the completeness, remark- 
ed on above, that (5.17) holds, i.e. sr is characteristically complete with respect to 
P. With (6.14) this fulfills the hypotheses of Proposition 5.18, so ~(J~") is a P- 
complete Lie algebra, as in (5.12). Finally then Proposition 5.13 can be applied to 
show that the space IgL2(O, ~) is P-propagative, proving the proposition. 

(6.16) Remark. Theorem 6.7 shows that propagation of conormality, in the sense 
of these Jk-spaces, can be maintained even in the presence of arbitrarily high multipli- 
city. As noted briefly in the Introduction, such high multiplicity will occur generically 
even in the simplest case, of conormal initial data at a finite number of point in the 
plane. Of course the importance of Theorem 6.7 is limited unless, and until, it can be 
shown that this type of conormality arises immediately after triple (and higher order) 
interactions. This will necessitate the introduction of related spaces at the triple 
point, an analysis which will be taken up elsewhere. Note that no propagation result 
of the type of Theorem 6.7 has been proved for the bigger space lkL~(12, ~ )  and 
for the reasons given in w 4, no such result is likely to be true. 

7. Geometric degradation 

In this section we give an example to show that the set L= in (1.15) ofiteratively 
defined triple interaction points need not be discrete. This means that in a proof of 
(1.14) some degree of smoothing must be shown for the anomalous singularities as 
compared to the incoming singularities. Of course under sufficiently strong hypotheses 
on the regularity of the solution this is known from the work of Bony [Bol], see also 
[BR], extending that of Rauch and Reed [RR1] in one space dimension. 

To justify, on geometric grounds, the definition of the varieties in (i.14), recall 
that we can expect the smallest possible variety of this type to be characteristic for P, 
in the sense of (5.15). Then, following a similar lemma in [MR]: 
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(7.1) Lemma. Any C ~ variety ~ containing the N points {zt}, {zz} . . . .  , {zN} /n 
{t=0} and characteristie for P contains the characteristic cone E+(q) with pole at any 
point q lying on three or more cones in ~ not all tangent at q. 

Proof. If  three or more cones pass through q and not all of  them are tangent 
then either there are three meeting transversally at q or else two or more are tangent 
along a line L c H but meeting a third transversally. In either case {q}~ o~f. Thus 
T ~ R 3 c N * ~ .  The only Lagrangian submanifold of T*R 3 contained in the charac- 
teristic variety of P and containing T ~ R 3 n ~  is the closure of N*(E+(q)\{q}). 
Thus it follows that E+(q)c  H (see [MR]), proving the lemma. 

(7.2) Lemma. I f  there exists a C ~ variety JW characteristic for P and containing 
the initial points {zl}, {zz} . . . . .  {z•} then the minimal characteristic variety containing 
these points is: 

(7.3) ~ =  LJ {E+(q); qELk} for sufficiently large k (in t>0).  

Proof By definition a C ~ variety is a locally finite collection of manifolds so 
the existence of 3(f', together with Lemma 7.1, shows that the iterative definition of 
the L k given in the Introduction will be locally finite. Obviously this gives the minimal 
Coo variety. 

The condition that there be a characteristic C = variety for P containing the ini- 
tial points is therefore equivalent to the discreteness of the set L= in (1.15). We now 
give an example to show that this is not always the case. For convenience let us use 
the notation p=(t ,  z )CR•  ~ for a point in R s. 

(7.4) Proposition. Let p0=0, pi=(0,  zl), i= 1 . . . . .  6, be the centre and six vertices 
of  a hexagon with unit sidelength in the plane, then the set L ~ defined by (1.15) is 

not discrete and in particular (1 +}/5, 0) is a point of accumulation. 

Proof At time t = r =  1]}/'3, the cones E+(pl), E+(p2) and E+(po) meet transver- 
sally at ql=(r ,  bl). By the symmetry of the configuration six points qi=(r, b3 
are in L1, forming a hexagon at time t=r, of sidelength r and centred at 0. 

At time t=2r the six cones E+(qj) meet transversaUy at the origin in space, so 
(2r, 0)~L2. Notice too that the cone E+(p3 meets the cone E+(qi+2) with its tangent 
cone E+(p~+2) non-tangentially at (2r, bi+l), and hence (2r, bi+a)CL2, cyclically 
for i=1 . . . .  ,6. Thus inside L2 is a new hexagon, with its centre, at t=2r and with 
sidelength r. Proceeding inductively a sequence of such hexagons appears, at successive 
time steps 2r k, with sidelength r k. Hence a point of accumulation must appear in 
by the time: 

T = ~7=12rI  = 1 + }/5. 

This completes the proof of the proposition. 
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Figure 2 

Figure 1 

Interaction of progressing waves for semilinear wave equations. II 

Figure 3 
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