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1. In~oducfion 

Let x ,+l=F(xl  . . . .  , x,) be the equation of a surface in R "+1. We shall study 
the mean values 

1---~fo<,,<h, f " mhf(x) ----- 1-11 hi" (X -- y, x,+ I--FO')) dy. 

Here hi>O, i=1,  ...,n, x=(x ' ,xn+l)6R ~+1 and yER ~. Assuming F(0)=0, we 
ask whether m h f ~  f a.e. as hi-~0 when f6L",  p > l .  This was proved for F(x')= 
/-/~ x~l, 0q>0, in Carlsson, Sj6gren, and Strfmberg [1]. Convergence of this type 
follows from the L p boundedness of the corresponding maximal function operator 

Ml, f =  sup mhlf[, 
0<hl<~ 

where fi>0. Stein and Wainger asked in [2, Problem 8, p. 1289] for which F the 
operator M r is bounded on L p, as a natural extension of the known results for curves. 
We shall give some answers to this question. 

Theorem 1. Let FqC T M  in a neighborhood of  0ER", for some e>0. I f  
O~F(O)/Ox~r i=1, ..., n, then there exists a 5 making M r bounded on LP(R"+I), 
p > l .  

Under stronger assumptions on the Hessian of F at 0, the regularity hypothesis 
can be weakened. 

Theorem 2. Let FE C 2 in a neighborhood of  0ER n, n>-_2. Assume that the matrix 
(02F(O)/Ox, Oxy)~,jea is nonsingular for any nonempty proper subset A of  {1 . . . . .  n}. 
Then M r is bounded on LP(R'+I) ,p>I ,  for some 5>0.  

* Supported in part by Naturvetenskapliga forskningsr~det. 
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Notice that the condition in Theorem 2 is satisfied if the Hessian of FE C ~ 
is positive or negative definite. Also if n---2, the assumption about the Hessian in 
these two theorems are the same. In general, the assumption of Theorem 1, 
O~F(O)/Ox~r cannot be weakened. In tact with prescribed values of O~F(O)/OxiOxj 
such that some O~F(O)/Ox~=O, we can find a smooth F for which Mr  is unbounded 
on L p. For this surface mhfwiU not converge a.e. even for f ~ L  ~. 

On the other hand, if F is a second-degree polynomial, no hypothesis on the 
Hessian is needed. 

Theorem 3. Let F be a polynomial of  degree at most 2. Then M r is bounded on 
LP(R"+I) ,p>I ,  even with 6= +oo. 

For n=2 ,  this was proved in [1]. 
By and large, our proof of Theorem 1 follows that of Theorem 1 in [1]. In Sec- 

tion 2, the proof is reduced to three lemmas which are proved in Sections 3 and 4. 
The main part of our proof is contained in the third of these lemmas, whose ana- 
logue in [1] is trivial. Section 5 briefly describes the modifications needed for Theorem 
2. The proof of Theorem 3 is also in Section 5, as well as the counterexample men- 
tioned above. 

In this paper, C denotes various positive constants, and ~ f l  means C-~<_ - 
a/B~-C. 

2. Structure of the proof of Theorem 1 

We use induction in the dimension. The case n--- 1 is well-known [2]. This case 
also follows directly from our proof. From now on, we assume the theorem to be 
true for n -  1, although this assumption will be used only in the proof of Lemma 3 
below. 

We need only treat the case F(0)=0.  Considering the transformation 
(x ' ,x ,+O-*(x ' ,x ,+l-x ' .grad F(0)), we see that it can also be assumed that 
grad F(0)=0.  We next show that we may assume 02F(O)/OxiOxj#O for all i and j ,  
by making a change of variables which depends on the relative sizes of the h~. Let 
max h~=hq. For any fixed t/, the transformation 

p 

(2.1) xq = xq+~l Z ~ x ~  
Xi=X~, i = 1  . . . . .  n, i r  

is admissible, see the proof of Theorem 2 in [1]. Since 02F(O)/Ox~r it can be 
2 �9 �9 seen that small nonzero values of t/will give 0 F(O)/OxiOx j ~0,  as required. Choos- 

ing 6 suitably, we shall always work in a small neighborhood of the origin where 

(2.2) ~ 0 2 F  ,v__O2F(O) ~ 0 ,  1-<=i, j<=n .  
Ox, Oxj Ox~Oxj 
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The mean value m h f c a n  be replaced by that over the rectangle {~hi<yi<hi ,  
i=1,  ..., n}, and we can take h~=2 -j, for large integers Ji. In the sequel, we shall 
write J=(Jl ,  ...,j,)6N" and k :min j~ ,  and k will always be large. Let 0-<~CCo(R) 
be 1 in [4, 1] and have support in ]0, oo[. (In this proof, we could actually use the 
rectangles {O<y~<hi} and hence take ~k~C o with ~ , :1  in [0, 1], but this is not 
convenient in the proof of Theorem 2.) Define a measure #j by 

(2.3) f ~p d#j = f (y, F(y)) / /7  g,j,(y,) ay, 
where gin(t)=2=g(2=t) for any function g in R. It is enough to estimate the maximal 
function operator 

M u f  = sup [/zj . f [ ,  

the supremum taken over those j with all j~ sufficiently large. 
As in [1], we shall compare the pj to measures vj whose maximal function is 

easier to control. Take 0=<q~CCo(R) with f q~ d t= l .  Define 

(2.4) vj = #j--tzj * (| r | 6o), 

60 being the Dirac measure at 0 in R. 
We use anisotropic dilations of the Bessel kernel G z to improve and worsen 

our operators. With z~C and 

= ,, "+1, 
we let 

Gff(x) = 2-rA+2kG'(2Jx X~, ..., 21~x,, 22kx,+~). 

The reason for the factor 2 ~' in the last variable is that 2 -~k is in general the order 
of magnitude of IFI in supp/~j. Notice that the/~j and vj are no longer dilations of 
fixed measures as in [1]. Now set iz~=GZi.#j and similarly for v~. We shall study the 
maximal function operator 

Mg_ v f =  sup [(#~-v~) . f [ ,  
J 

where f is assumed to be in the Schwartz class S, and its analogues M~ and M~. 
The following two lemmas give L p estimates for M~_~. They are similar to the 

corresponding lernmas in [1], and their proofs are given in the next section. 

Lemma 1. There exists a a>O such that for  

l lg , : -vfh  c Hflh, 

Lemma2. For O < R e z < l  andeach p > l  

Ilg$- vfIlp <- C(z)]Ifll, ,  

- o ' < R e  z < 0  

yes. 

f s, 
where the constant C(z) increases at most poIynomially in Im z for f ixed Re z. 
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Interpolating as in, e.g., [1], we conclude that the operator M~ is bounded on 
L p for p > 1. Defining M~ like Mu, we see that Theorem 1 follows from the next 
lemma. 

Lemma 3. The operator M~ is bounded on LP for p > l .  

In [1], the measures v~ were found to be dilations of a C o function, and so M~ 
was easy to control. In our case however, the density of vj may be unbounded near 
the surface when some derivative of F vanishes at points in supp/tj .  This is the 
main difficulty in the proof of Lemma 3, given in Section 4. 

3. Estimates for M~_~ 

Proof of Lemma 1. As in the proof of Lemma 1 in [1], it is enough to show that 

(3.1) ~ j  1~-9~12 <- C. 

Clearly, 

(3.2) [//j(O-- 9j(OI -<- C2 -1,14,1, i = 1 . . . . .  n. 

We shall use van der Corput's lemma, see [2, Lemma 2.3], to estimate /~j(O 
for large 4. One has 

(3.3) /~j(4) = f e-2~(s"e'+ro~r ~ Oj,(Y,) dy. 

Take qE{1 . . . . .  n} such that iq=k. In the region we are interested in, 02F/Oy~ is 
bounded away from zero. By van der Corput's lemma, the integral in y~ of the 
exponentialin (3.3) over any interval near the origin is at most c14n+11-1/~. Integrating 
by parts in y~, we conclude that 

I/~j(4)l <- C(2 -2k 1~+11) -x/2. 

The first derivative with respect to yi of the parenthesis in (3.3) is 4i + F~(y)4.~+~. 
Notice that IF/(y)I <-- C2 -~ here. Hence, if 

(3.4) 1~1 > C2-~14n+~1, 

van der Corput's lemma gives 
I~(~)l ~- C(2-J'14~1) -x. 

Now/~j is bounded and these estimates imply 

IPj(g)l -< C(1 + Z~  2-~' 14,1 +2  -=k 14,+~1) -zz= 

for all {, since the last term dominates 2 -J, 14,1 when (3.4) is false. The same estimate 
then follows for 9j. 
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Combining this with (3.2), we get 

n IPj (~) -  9j(~)] ~ C rain ((1 + ~ 1  E-J' [~] +2-ek I~n+ll) -1/~, 2-J11~11 . . . . .  2 -~ .  I~.l). 

Arguing now as in [1], last part of the proof of Lemma 1, we obtain (3.1) and thus 
Lemma 1. 

_Proof of Lemma 2. We have 

IG~(x)l <_- C(z) Z,nez2-Iml Rez+,~(.+l) ZIxl <a E-re' 

see [1], proof of Lemma 2. Let 

{ 2SJ,+~k+m(,+l) if ]Xi[ <- 2 -J~-m, i = 1 . . . .  , n, and Ix,,+1[ <= 2 -~k-m 

2T(x) = 0 otherwise. 

We estimate M~ and M~ separately. For f=>0, 

(3.5) I/~*fl ~ C(Z) ZmeZ2-tmlReZl"tj*2~*f 

Let 
~ f  = sup g~ �9 '~7 *f-  

J 

When m<=0, the support o f / . t j . 2~  is contained in the box {Ix~l_<-C2 -J,-r', 
i=1,  ..., n, IXn+~l<=C2-~k-m}, and the density of /~j*2~ is seen to be bounded by 
a constant divided by the volume of this box. Hence, ~r is bounded by a constant 
times the strong maximal function M,f ,  and thus .,gin is bounded on L p uniformly 
for m-<0. 

Now let m>0 .  We use (2.3) with the change of variables yi=2-~ts~, getting 

(3.6) /tj �9 ~r . f ( x )  = f 1-[ 1 r (s,) ds 2,r J, + 2k +,n(= + 1) 

-f'.,l~-~-',-'. , - ,  ..... . . f ( ~ ' -  2 - ' ,  - o', x . + 1 -  e ( 2 - '  s) - o.+ 1) d~. 

Here s=(sl . . . .  , s~) and 2 - J s=(2 - J ,  sl, ..., 2-J~s~), and we write v=(vl, ..., v~+~)= 
(v', v~+l)~R "+~. When taking the supremum in the j~, we shall start by fixing the 
non-negative integers l i=ji-k ,  and vary k. Let A= {i: li<m}. Denote by na 
the projection R ~ - R  ~ obtained by replacing the i: th coordinate by 0 for i~ A. 
With F. t= Fo rca, we have 

F(2-Js) = Fa(2-Js)+O(2 -~k--) 

for siEsopp ~k. Therefore, we can replace F by Fa in (3.6), provided we integrate 
in v~+z over a longer interval lv~+d<-C2 -~k-m. 
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We now recall a one-dimensional lemma from [1]. If  co=(cok) is a decreasing 
sequence of positive numbers and z = (Tk) a sequence of  real numbers, let 

1 rok 
(3.7) M '~ g(t) = sup x----I [g(t--*k--S)l ds. 

k Z O )  k . ~ - - e o  k 

Lemma 4 in [1] says that if for each k the inequalities I~zJ >wk, l>=k hold for at 
most m->l values of  l, then M ~'~ is bounded on L P ( R ) , p > I ,  with norm at most a 
constant times m lip. In particular, this is satisfied when I~k+~l--<~ for all k. 

We shall estimate the modified integral in (3.5) and start by integrating in v~+~: 

2=k+" f l,,+~l~_c,_,~_mf(X'-2-Js-v',x,+l-Fa(2-Js)-v.+l)dv.+, 

<: C M " + l f ( x ' - 2 J s - v  ", X.+x). 

Here M "+~ is M '~ applied to the n + l  :st variable, with cok=C2 - ~ ' - "  and vk= 
Fa (2 -k -qs l  . . . .  ,2-k-l-S,) .  Now fix p > l .  One finds ]vk+m+cl<--C2-=k-z"-=c<:mk 
for some C. Thus M "+1 is bounded on LP(R n+a) with norm at most Cm ~/~. 

Integrating then in v~, i =  1, ..., n, we can apply similar maximal operators M ~, 
defined as M ~ acting in the i : th  variable, with C0k=2 -k-t*-m and Zk=2-k-t~S~. 
The norm of  M i on LP(R "+1) is bounded by Cm lip. 

Summing up, we obtain 

/.tj* 2~'./(X) ~ C f M ~ ... M"+~f(x) ~ Ip(s,) ds,. 

The right-hand side here defines an operator with norm at most Cm ~"+~)jp on LP(R "+ 1). 
Having thus varied k, we shall also let the l~ vary, first in such a way that A is 

fixed. Observe that M ~ . . . .  , M"  are independent of  the I~. Moreover, M "+~ depends 
only on those l~ for which i~ A. Such an l~ can take only m different values, and the 
number of  possible A is finite. Replacing the supremum in these remaining variables 
by a sum, we see that the operator ~,m for m > 0  is bounded on L~(R"+~), with norm 
at most Cmnm(n+l)lP=Cm c. 

From (3.5) and our estimates for ~/m, it follows that 

[]su.p [ /~* f l l [p  ~ C(z)Zm~z2-1'<g=z I[~mfHp ~ c(z)IIfl[p. 
J 

To conclude the proof, we need a similar estimate for v~. Because of  (2.4), v~ 
is a sum of  convolutions in certain variables of  #~ with normalized dilations q~j, 
of  ~oCCo(R). These convolutions can be estimated by means of  one-dimensional 
maximal operators. Hence [v~,f[<=CM(#~,f), where M is a sum of products of 
maximal operators in the coordinate directions. Since M is bounded on L ~', so is 
M~ and Lemma 2 is proved. 
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4. Proof of  Lemma 3. 

Expanding the tensor product in (2.4), we see that the measure D is a sum of  
convolutions in one or more variables of P1 with one-dimensional functions ~oj,, 
i =  1, ..., n. Let v~ be the convolution in the r:th variable of #i with ~oj. The terms 
in the above sum are either of type v~ or convolutions in certain variables of some 
v~ with functions (Pi,. These last convolutions can be estimated by means of one- 
dimensional operators acting on v~, of. the last lines of Section 3. Therefore, it is 
enough to estimate the maximal function associated with the measures (v~) i for each r. 
To simplify notations, we take r =  1. 

We have 
v}*f(x)  = 21,+Ik X 

• fff(x,-yl- u, x~--y=,... ,  x , - - y , ,  x,+l--  F(y)) q~ (2 i` u ) / / ~  ~9 (2kyl) du dy. 

In this integral we want to make the change of variables (u, 21)--*(5, t) given by 
s = u + y l ,  t = F (y l ,  Y2 . . . . .  y,). It is therefore necessary to study the zero set of the 
Jacobian O(s, t)/tg(u, yl)=F~(y). Because of (2.2), Fx~ is of constant sign near 0, 
say F~'I>0. Hence, the implicit function theorem shows that the function y~-~ 
El(y1 . . . . .  y,) has a unique zero y l = r  z . . . . .  y,) for (Yl . . . . .  y.) in a neighbor- 
hood of 0. Further, { E C ~ and 

(4.1) 4; . . . . . .  :t:1, i = 2  . . . . .  n. 

Later we shall need the function 7"--T(y2 . . . .  , y . )=  F(~, y~, ..., y,). Notice that 

(4.2) IT;I=IF[(~,Y2 . . . . .  Y,)I <- Cmax[y~], i = 2 . . . . .  n. 

The indicated change of variables can be carried out in each of the domains 
{yl<~} and {yl>~}. It follows that we can estimate v } . f ( x )  by at most two integ- 
rals of type 

2i1+2:k f f(x~-s, x,-y~ . . . . .  x , - y , ,  x , + l - t )  
(4.3) 

1 
�9 r (2i, u ) / /~  ~ (21,yi) ~ ds dt dye..,  dy n. 

Here lsl <-C 2 -i~, because the same is true for u and Yl. Since y~ is independent of 
s and q~ is bounded, we can estimate the integral in s in terms of the standard maximal 
function operator M1 taken in the first variable. Thus the expression (4.3) is at most 
a constant times 

2Ii,  f M~ f ( x l ,  x ~ -  ys, ..., x , - -  y , ,  x,,+ x -  t) 

1 
� 9  ~ ( 2 k y , ) ~  dt dye.. ,  dy. = I(x). 
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We consider first ihe case when F~(y) stays away from 0. Let I '(x) be that part 
of  I(x) obtained by restricting the integration in (Y2 . . . .  , y,) to those points for which 

r [ -  C 2 -~ ,  C 2-Jq. Here C is chosen so large that supp ~9 c [ -  C/2, C/2]. Because 
of  (2.2), F~' is not far from linear and, therefore, essentially constant as we integrate 
art in l"(x). By the mean value theorem, the variable t in l"(x) stays within the interval 

I t - F ( 0 '  Y2, ..., Y,) I -< C2-J11F;I. 

Now we can estimate the integral in t by means of  a one-dimensional maximal func- 
tion: 

I ' (x)  =< C2 z~ ,  • 

• Mn+aMaf(x1' x2-Y2 . . . . .  x . - - y . ,  x . + I - F ( 0 ,  Y2 . . . .  , y.)) dy~.... dy. .  

The supremum in J2 . . . . .  j .  of this expression is dominated by a lower dimensional 
maximal function of  the type of  Theorem 1. This is controlled by our induction 
assumption, and thus 

(4.4) Hsup I'(x)]l, <- C If/lip, p > 1. 
J 

Consider next l " ( x ) = l ( x ) - l " ( x ) .  The function y l ~ F ( y l  . . . .  , y,) now has a 
minimum Ta t  ~ [ - C 2 - J 1 ,  C2-Jq. Hence, t - T . . . ( y ~ - r  2 so that O<=t-T<=C2 -~j~ 

in l"(x). Moreover ' [F~'(y)l.~l/t-- T, and thus 

l"(x) <- C2~:Y, f o~,_r~c~_2j ~ M l f  (xl,  x2-Y~ . . . . .  x . -  y . ,  x .+a- t )  

n �9 1 
�9 11~ ~(2~,y,)-~--~dt  dy2 ... dy, 

"< x ' ~  C 2Ja+m/z+lTj' f : _ M1 xl, 
- -  ~ m = l  j C2_2]l_rn~t_r~C2_2. _,,,+ 1 f (  x2--ya . . . .  , x . - - y . ,  X.+I -- t) 

�9 ~(2J, yl)dt  dy2 ... dy, = Z ~ = l  Jm(X). 

Fixing m, we estimate Ym. Write l~=j i - k  as before. Consider those i for which 
li>m+21~. From now on, we assume that this happens precisely when 2<-i<=d 
for some d with 

(4.5) 

Define 

and 

1 ~-d~-n. This is no restriction. In particular, 

0 ~ I  i ~ _ m + 2 1 1 ,  i = d + l  . . . . .  n. 

~* = ~ * ( y ,  . . . . .  y . )  = r  . . . . .  o ,  y ~ + ,  . . . . .  y . )  

T *  - -  T * ( y ,  . . . .  , y ~ )  = T ( 0  . . . . .  0 ,  y d + l  . . . . .  y . ) .  



Estimates for maximal functions along hypersurfaces 

Then (4.1-2) imply 
[~*-~1 =< C2-k-m-a tx  ~ C2-1x 

and 
IT*-TI  ~ C2 -~k-m-~tl = C2 -zJ~-m, 

when 2~,y~fsupp ~/, i ~ 2 ,  ..., n. Extending the domain of integration in the defini- 
tion of Jm, we get for some C 

Jm(X) ~ C2 M x f ( x l ,  x z - y ~ ,  .... x , - y , ,  x , + l - t )  

Ir 

�9 ~ (2J, Y3 dt dye.., dy,. 

Now Y2 . . . .  , Yd appear only in the argument of M~f ,  and one can apply the stan- 
dard maximal function operators in these variables. Hence, 

(4.6) din(x) ~ C2 ~j`+mt~+s~+d' 

" f ,t- Aid ... M , ~ M x f ( x l  . . . .  , Xd, Xd+ l - -  Yd+ l ,  .. ", Xn __ yn, Xn+l--t) 

�9 1-[]+~ ~/(2J'yi) dtdyd+~ ... dy , .  

We shall estimate sUpjJm(X ) and its L p nor,n, for a fixed p > l .  Notice that the 
right-hand side of (4.6) is independent ofj~ . . . .  ,Jd, SO that the supremumneed only 
be taken in j l , ja+~,  . . . , j , .  

If d = n ,  we have T*=0 and 

Jm(X) ~ C 2 - ' / '  Mn+ x M ,  ... M ~ f  (x). 
Hence, 

(4.7) It sup Jm[[p ~ C2 -m/2 ]l f l ip.  
j:d=n 

The remaining case d < n  is divided into two parts. In the first part, we can 
replace the supremum by a sum. In the second part, T* is almost linear in y~ . . . . .  yd, 
which will allow us to apply the operator M '~ defined in (3.7). 

Part 1: d < n  and A > ( l + e ) k ,  or equivalently l l>ek .  The right-hand side 
of (4.6) is the convolution of M d . . .  Mlfwi th  a positive measure %. 

We shall estimate l[%ll and consider first the size of supp a i .  Because of (4.1), 
[~*/~yq[ ,-1, where as before q is chosen so that j q = k .  Notice that now d<q<-n .  

For fixed Yi, i ~  q, the inequality [~*[ ~ C2-A can thus hold only for ya in an interval 
of length C2-A. It follows that 

Clearly, 
llsup ~ j ,  n a  ... n ~ f l l ,  ~- (XII~A)lima... Mlfll,, 
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where the supremum and the sum are taken over thosejl ,Jd+l,  . . . , j ,  satisfying (4.5) 
and l l>~k .  If  we sum IIGj[I in ld+l, ..., In with 11 and k fixed, we get at most 
C ( m + l l ) " - d 2  -'n/2-t'. Taking then the sum in 11 and k, we see that 

Z llajll <- CmC2 -"/~ 
so that  

(4.8) II sup ],nil. <-- CrnCN-'n/' IIfllp. 
par t  1 

Part  2: d < n  and jl_<-(1 +e)k .  We fix ll, la+1, ..., In and vary k. The main 
difficulty in estimating the right-hand side of (4.6) is now that 4" and T* depend on 
Ya+l, ..., Y , .  We shall therefore divide the range of these variables into small cubes 
in which 4" and T* are essentially constant. 

Using (4.1) and the fact that FCC TM, we get 

(4.9) 4" (Y2, ..., Y,) = z~]+l b~ Yi + O (2-k(1 +0), 

if 2-J 'y i (supp ~k. Here bi=-F;~(O)/FI'I(O)~O. The remainder in (4.9) is at most 
C2 -J1 by the assumptions of Part 2, so that 14"1 <- C2-J, implies 

(4.10) 1~+1 b'Y'l <- C2-h" 

Consider the lattice of cubes in R n-d having side 2 -k- 'n- 2tl and centers at those 
points whose coordinates are integer multiples of 2 -k-'n-2q. In (4.6) we make the 
integral larger by deleting the factor / /~ (2  -i,) and extending the integration in 
Yd+~ . . . .  , Yn to the union of those lattice cubes which intersect the set 

{(Yd+l . . . . .  Yn): [Yil <= C2 -I '  and [Z]+lbiYi[ <= C2-1'}. 

Let these cubes be Q~, r = l ,  ..., N. Their centers can be written as 2-kq '=(2-kr /~ 1 . . . .  
..., 2--kr/,~), and ~/" and N do not depend on k. Since q > d  and j ~ - j ~ = l l ,  a com- 
parison of volumes shows that 

(4.11) N ~ C2 -~;~+~-h 2 ("-e}r 

From (4.2) we see that if  (Yd+l . . . .  ,Yn)EQ~,, then T*(y) differs from T [ =  
T*(2-k~/') by at most C2 -v,- 'n .  Now (4.6) implies 

din(X) <= C2-'nl2+~']+xJ'-("-a)(~+m+2t~) X~'=l 22"h+'n,l lt- f TF,[~-c ~-2h" _'n d t .  

�9 IO'~l-xforga ... M x f ( x ~  . . . . .  xa, xa+~-Ya+x,  ..., x ~ - y n ,  Xn+~-t)dya+x ... dYn. 

To estimate these integrals, we shall use operators of type (3.7). For i = d +  1, ... 
..., n we let M~ be M '~ acting in the i:th variable, with ink=2 -k-'n-~tl-~ and 
%=2-kt/,'.. Since 12-~n71<-C2 -k, the norm of M~' in LP(R n+~) is botmded by 
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C(m+ll) ~/p. Let similarly M~'+~ be M '~ acting in the n + l  :st variable, with tOk= 
=C2 -~k-2t~-m and Zk=Tf,. The quantity T[ is the value of F at some point with 
coordinates at most C2 -k, so that ITp,]<-C2 -~ .  Hence, the norm of M~'+x is less 
than C(m+ll)  x/p. 

We conclude that 

jm(X ) < :  (7~-mlg+ Za+ xj,-(n-d)(k +m+ 2lx) "~N M~+ x ... M$+1Ma ... Ml f(x) .  

For the norms, we have in view of (4.Ii) 

]lsuP d~IIp <= c2-ml2 2 - q (  m + 11) c llfll~. 

The supremum in 1~, ld+l, ..., I~ is now estimated by the corresponding sum. Because 
of (4.5), 

(4.12) I1 sup JmIll, ~ CmC 2-m/~ Ilfllr 
P a r t  2 

From (4.7, 8, 12) we conclude 

Ilsup dmil~, ~ Cm c 2-"/~ Ilfll~,. 
./ 

Summing in m, we get 
Hsu.p I"(x)l[ < C]I fl] p ~  p -  

J 

Together with (4.4), this estimate ends the proof of Lemma 3. 

5. C ~ surfaces, quadratic surfaces, and a counterexample 

Proof o f  Theorem 2. We start with some linear algebra. Let 0 # A c {1 . . . .  , n}, 
and take qEA. 

Lemma 4. Let F satisfy the assumptions o f  Theorem 2, and take e>0.  Then 
there exists a linear change o f  variables o f  type 

(5.1) x~ = x i + ~ j c a a u x ~ ,  lEA, 

x~ = x,, i~ A, 

such that ]O~F(O)/Ox~Oxj--6iq[<~ for lEA, j ~  A and such that the assumptions o f  
Theorem 2 remain valid i f  F is considered as a function o f  (x'l, ..., x~). 

To prove this lemma, one can assume A = {1, ..., q}. Using block matrix com- 
putations and the fact that the matrix (02F(O)/OxiOxj)~d=l is nonsingular, one finds 
that there exists exactly one transformation of type (5.1) giving O~F(O)/Ox~Ox~ = 6iq, 
iE A, j ~ A. A slight perturbation produces the desired transformation. 
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In the proof  of  Theorem 2, one can assume F(0)=0 ,  grad F(0)=0 ,  as in 
Theorem 1. Let Ji, i=1 ,  ..., n, be as before, with k=minji=jq. Further, N will 
be a large natural number determined later. We first change coordinates according 
to Lemma 4 with A={i:j~<=k+N}, and then make a change of  variables of  type 
(2.1), with a suitably small 11. It is therefore no restriction to assume that 

o~r(o) [ 
Ox~Oxj 6i~ < 8, iEA, j eA ,  

and 
O~F(O) 
OxiOx'-------f ~ O, all i, j ,  

in addition to the conditions of  Theorem 2. We then follow the pattern of  the proof  
of  Theorem 1. The only part of  that proof  where FC C z is not sufficient is the estimate 
for l"(x) is Section 4. 

Consider first the case when 1 r A. Assuming y~ . . . .  , y,  as in I(x), i.e. y ~ 2  -J,, 
we shall make sure that [~(Y2 . . . . .  Y,)I > C 2  -J~ in l(x), so that I " (x)=0 .  The mean 
value theorem and (4.1) imply 

i = g  

for some ~/6R" with [ql==C2 -k. In this sum, term number q is -F~(11)y~.." --2-k. 
The terms with i6A, i~q  are at most Ce2 -k. Those terms with i eA  are bounded 
by C2 -k-N, because lyi[<<-C2 -k-N for these i. Since IF;~(~/)I_-<C, it is then clear 
that we can choose 8 and N so that this implies [~I~2--k>c2--k--N>=C2 -~', as 
desired. Notice that this choice depends only on A and q. Thus by finiteness there 
exists one choice of  e and N which will do for all A and q. 

Next we indicate how to estimate l '(x) when lEA. When d=n, we proceed 
as in Section 4. For  d<n, we always use the argument of  Part 2. Instead of  (4.9), 
we now get 

r = 2~a+1 bi Yi + o (2-k). 

Since 2-3~=>2 - k - s ,  the remainder here is bounded by C2 -3~ if we stay near enough 
to the origin. This implies (4.10), and we can argue as in Section 4 to complete the 
proof. 

flroofof Theorem 3. As in the proof  of  Theorem 1, we can assume that the terms 
of  order 0 and 1 in F vanish. We may further assume h~<=h2~... <=h,. There exists 
an m such that F is independent of  xm+~, ..., x,  but  not independent of  x,,. 

I f  F,~';, ~ 0, we make the change of  variables 

�9 - -  "tr-Tm ~ l  Xm = Xra -b 112ul Xi 

x~=x' ,  i ~ m .  
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It is easy to see that for a.a. t/this transforms F t o  a quadratic form with nonvanishing 

�9 . �9 X �9 X �9 (x;) a terms for i=1 ,  . ,m. Now apply Theorem 1 with n = m  to x 1, ..., ,,, ,+1 
and the strong maximal function in the remaining variables. The conclusion follows, 
since we can have 6 = oo in the proof  of  Theorem 1 when F is a quadratic form. 

Assume next Fin"m-0. Then F can be written 

F = x,,Zt,=l aix ,+Pl(Xl ,  ..., xm_O, 

where l < m  and as#0, and P1 is a quadratic form. The change of  variables 

gives 

= Z' l  a, x, 

x ~ = x i ,  i ~ l ,  

F = (x~,+ Z , < ,  , b,x~)x~+P~, 

where Pa is a quadratic form in x~, 1 <-i<m, i~l .  Now let 

so that 

x,," ---- x,." + ~ < m b i x "  

x~'=x;, i # m ,  

t /  t /  F = xm xt + Pa. 

As in the proof  of Theorem 2 in [1], M r  will be a superposition of  two maximal func- 
tion operators for quadratic surfaces in R 3 and R "-1. Since Theorem 3 holds for 
n =  1 [2, Theorem D p. 1248] and n = 2  [1, Theorem 2], an obvious induction a rg u -  
ment ends the proof. 

A counterexample. We shall construct an FEC 0~ with prescribed values for 
F;  5 not satisfying the hypothesis of  Theorem 1. The corresponding M r is unbounded 
on all L p, p <  co, and not even L 0~ can be differentiated along the surface X,+l = 
F(x'). We make the construction for n=2 ,  since the general ease is analogous. 

From [2, Sect. III, 3] we know that there exists a C = curve t=q~(s) in the plane 
which does not differentiate L *~ functions in R 2. Moreover, ~p and all its derivatives 
vanish at 0. We take 

F(xl ,  xa) = q~ (Xl) + axixa + bx~. 
For  f E C  ~ one has 

(5.2) 

h I h t  

hlh~. 

. ~ l f  ~ f ( x l _ y l , x a ,  h, dyl,  ha O. 
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This gives an estimate for the maximal operator M ,  for the curve (s, 0, tp(s)) in 
terms of  M e. Since M ,  is unbounded on L v, so is Mr .  

Take an L ~ function g in the plane which cannot be differentiated along the 
curve t=~p(s). I f  the function f ( x l ,  x2, Xz )=g(x l ,  x3) satisfies (5.2) for a.a. x, 
then f cannot be differentiated along the surface, and we have the desired counter- 
example. Let us thus verify (5.2) for a.a. x when f E L  ~ Because of  bounded conver- 
gence, it suffices to show that 

1 #h2 - 
(5.3) -~2 J o f ( x ~  -- Yx, xz -- Y2, x3 -- q~ (Y~) -- ay l  Ya -- bye) dy~ 

- - " f ( x , - - y l ,  x~, Xa-~P(,Yl)), h~ ~ 0 

for a.a. (x, y0CR 4. For  each yl ,  one can different iatefa .e ,  along the curve yz-,- 
ay~y2 +bye.  Hence, (5.3) holds for all x outside a null set Ey 1. Since the set {(y, y~): 
xEEy,} is measurable, (5.3) follows by Fubini's theorem. 
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