The Weyl calculus with locally temperate metrics
and weights

Nils Dencker*

1. Introduction

The Weyl calculus of operators, defined by

(L) @ D)u) = 2n)" [ a(1/2(x+), &) exp (i (x—y, ENu(y) dy dé

was developed with general classes of symbols by Hormander [7], generalizing the
calculus of Beals and Fefferman [1}, [2], [3]. Both the Weyl calculus and the Beals—
Fefferman calculus require that the symbols are temperate, so they cannot grow faster
than a polynomial at infinity. Thus one can’t use the calculus to study, for example,
the operator — A4 +exp (]x]?) on R", where 4 is the Laplacean. In [5], Feigin introdu-
ces symbol classes corresponding to the weight f(x)*+ |&|2, where O<c<f(x) satisfies

lgrad f(x)| = Cf(x)'*%, < 1.

The symbols may therefore grow exponentially in the x variables. The corresponding
operators are required to be properly supported, so that the Schwartz kernels are
supported where

x—yl = C(fG)+f )7 o<1

This condition makes it possible to get a calculus for the operators.

In this paper, we generalize the results of the Weyl calculus to locally temperate
symbols, which are temperate in the £ variables only. In order to do that we introduce
a metric in the x variables, to define neighborhoods over which the symbols are tem-
perate. We use cut-off functions y supported in the corresponding neighborhood of the
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diagonal, to define the operators

(02 ay(xDyu = o)~ ff a(12(x+2), 205, ») exp (i (x—, HHu(y) dy dt,

where a(x, &) is locally temperate.

In section 2 we show that 4} is independent of the choice of y modulo lower
order terms, if y=1 in a neighborhood of the diagonal. In section 3 we develop the
Weyl calculus for the operators ay, under certain restrictions on the support of y.
C* and Z’ continuity for these operators are proved in section 4, where we also show
that a is continuous on L? when a is bounded, compact on L? when a—0 at ee.
In section 5 we derive conditions for the operators to be Hilbert—Schmidt or of
trace class and prove an estimate of the trace class norm. These results are used in
section 6 to improve and generalize Feigin’s estimate [4] for the error term in the
asymptotic formula for the number N (1) of eigenvalues =2 of certain pseudodif-
ferential operators p} in R”,

N = (@2n)™" f dxdé,

plx, D=4

in the same way Hormander [8] improved and generalized the estimate of Tulovskii
and Subin [9]. In fact, the proof in [8] goes through with minor changes for the
locally temperate case. For some temperated symbol classes, sharper estimates for
the error term are known — see [6] and references there.

2. Locally o temperate metries

Let ¥ be an n dimensional vector space with a slowly varying Riemannean
metric G. (See Definition 2.1 in [7].)
~ Let g be a slowly varying Riemannean metric on W=V @V’, where ¥’ is the
dual of V. W is a symplectic vector space with the standard symplectic form

a(x, & y,m) =& )~ (%, 8, (v MEW.

The dual metric of g with respect to ¢ is defined by

lo(x, & y, nI?
2.1 a = sup~ s DL oW
@b ge( &) PN ) we

The metric g is o temperate if there exist constants C, N such that
8 = Cgyn (14825 (x~y, ).

We shall now localize this definition by using the metric G, which is assumed to be
fixed in what follows.
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Definition 2.1. We say that g is locally ¢ temperate if g is slowly varying,

2.2 G.() =g, D) V(x,8, (DWW,
and there exist positive constants ¢, C and N such that
(2-3) gx,af = ng,n(l +g;,§(x"'y, 5‘11))”

when G.(x—y)=c. We say that the positive function m on W is locally ¢, g temperate
if it is g continuous and there exist positive constants ¢, C and N such that

249 m(x, &) = Cm(y, N)(1+g%,:(x—y, E=n)"
when G,.(x—y)=c.

Condition (2.2) means that the g neighborhoods in W are refinements of the
liftings of the G neighborhoods in V. Observe that, by the slow variation of G, one can
make (2.3) and (2.4) hold when min (G.(x—)), G,(x—y))<c, with a smaller c.

Let g be a slowly varying metric on ¥ and m be a g continuous function. We are
going to use the symbol classes S (m, g) of [7]. In order to have a calculus of pseudo-
differential operators with symbols in S (m, g), where m and g are locally ¢ temperate,
it seems necessary to make the operators properly supported. For that purpose we
shall need cut-off functions supported in a neighborhood of the diagonal in V& V.
The neighborhoods are to be defined by the metric
2.5 Gey(t,5) = G(D+G,(5) (x, »), (&, HEVDY,
on V@V, which is obviously slowly varying. The following lemma shows that g
(or m) satisfies the estimate (2.3) (or (24)) in a G neighborhood of the diagonal.

Lemma 2.2 Let G be slowly varying, and let

2.6) D(x,y) =inf G, . (x—Xo, y—Xo)
)

be the squared G distance of (x, y) to the diagonal, where G is defined by (2.5). Then
there exist constants C,e=>0 such that
2.7 min (G, (x—»), D(x,)) =e¢= C~* = G, (x—»)/D(x,») = C.
Proof. By the slow variation of G we find that
Gry(Xx—xp) = Gy c) (X=X, y—Xo) S €
implies
G, (x—) = 2(G(x— %)+ G, (x—¥)) = 2Ce
if ¢ is small enough. Conversely, if G.(x—y)=e¢ is small enough, then
G iy (3 (x—)) = Ce/4,
2

which gives D(x, y)=Cég/2. This gives (2.7) with a smaller ¢ and proves the lemma.
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To constrain the supports of the operators, we shall use cut-off functions in
S(1, G) supported near the diagonal. By using partial sums of partitions of unity in
V@V with respect to G, for sufficiently small and positive &, one can construct

x€S8(1, G) with support where D(x,y)<e so that y=1 where D(x, y)<-;-.

(See Lemma 2.5 in [7].) In what follows, we shall denote by G neighborhoods of the
diagonal the sets {(x,»)eV@V; D(x,y)<c}. If x has support in a sufficiently
small G neighborhood of the diagonal, then Lemma 2.2 shows that y is properly
supported.

Let a(x, )¢ (W) and xeS(1, G) be properly supported. We define the op-
erator a, by

@8 ayu) =00 [[a(F G+ &) 1 ) exp (ix~y, Hu)dy dt,

u€C=(V), which maps C=(V) into C=(V) and C7 (V) into Cy (V). When
a€S(m,g), m and g are locally temperate, then (since y is properly supported)

2.9) (ayu,v) =0~ [ a (3 x+y), ) x(x y)exp (ix—y, O)u()o(x) dx dy s,

ucC=(V), veCy(¥V), gives a well-defined mapping of Cy (V) into &’(V) and
C=(V)into 2’ (V).

We shall study how the operator g} changes for different choices of x. Let
a(x, &), b(x, )cF (W) and let x, ¢cS(1, G) be properly supported such that
[p|=c=0 on supp x, which implies y=y/peS, G).

We have ay=Dbj, if

(2.10) Q(3 G+, y—x) x(x, ) =b (3 (x+3), y—x) 9 (x, ).

Dividing by ¢ and taking the inverse Fourier transform, we obtain (2.10) if

.11 b(x, & = (2n)—"ffexp i, n—-E) (x+%,‘ x—-;-) a(x,n)dtdn

. { 1
= exp (—i{D,, D )Y [x+—-2-, x——z—] alx, n)l,=0§.
n=

We shall show that (2.11) can be extended to a weakly continuous map
S(m, g)>a—~beS(m, g) when y has sufficiently smail support, m and g are locally o
temperate and g=g°.

First, we study the integrand in (2.11). If a€¢S(m, g) and x€S(1, G) has sup-
port where D(x, y)=<e, and ¢is small enough, then Lemma 2.2 and the slow variation
of G imply

(2.12) (t, )~y (x+—;—, x——é—) a(x, 1)eS(m, §)
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uniformly in x. Here

(2.13) m(t, 1) = mx, 1)
and
(2.19 &, (7, n) = G.(1+g,,.(0,m)

are constant in the # variables. Obviously, § is slowly varying and 7 is § continuous.
Let A te the quadratic form on W defined by

Ax, O =(x,8), (x,OeW.
Let

. r, , o)
(2.15) &4y, m) =sup LM = g2 .(») + GE(m),
(r,0) g,,,(r, Q)

be the dual metric of § with respect to 4, where

)
(2.16) Czln) = sup=-r5=
and
5 () = sup 2 O
(2‘17) gx,t(y) - s“‘llp gx,t(oa Q) *

In order to estimate (2.11) we have to prove that & is uniformly A temperate, i.e.
there exist constants C, N such that

gt,t = Cgr,q(l +§ft("—t, Q-t))N
uniformly in x.

Lemma 2.3, If g is locally o temperate, m is locally o, g temperate and g=g°h?,
then § is A temperate, ¥ is A, § temperate and

(2.18) &, =h(x, gl
The estimates are uniform in x.

Proof. Since

G.(1) = g,,.(r,0) Y(r,0, (W,
we obtain that

2.19) Gi(n) = g3,.(0, ) = h~%(x, 1) g«,.(0, 1)
Thus

. I _
g2 =h%(x, 1) U0, o) = h=%(x, 1) G, (),

which gives (2.18). Since g is locally ¢ temperate, m locally o, g temperate, (2.19)
implies that & is A4 temperate, and m is 4, § temperate, which proves the lemma.
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Proposition 2.4, Let g be a locally o temperate metric, m be a locally o, g tem-
perate function and glg°=h*=1. There exists e=>0, so that if ¢S, G) has sup-
port where D(x,y)<e, then the mapping Cg(W)3da(x, &)~b(x, &) defined by
(2.11) has a unique extension to a weakly continuous linear mapping of S(m, g) into
itself. The remainder term

(2.20) b(x, &~y (—i{D,, Dy)'x (x+" X )"(x’ Mifeze

where b(x, &) is defined by (2.11), is weakly continuous with values in S(mh"*?, g).

Proof. Since /1 (0, )=m(x, &), Theorem 3.5 in [7] and Lemma 2.2 immediately
imply
b(x, 8| = Cm(x, &)

with C independent of x. To obtain bounds on the derivatives of b, we observe that
differentiation commutes with the convolution operator exp (—i(D, D,)), and
ac S(m, g) implies (w, D)ac S(my, g) where m;=mg(w)"® Taking weW so that
gx,:(w)=1 we obtain that

|(w, DYb(x, &)l = C’'m(x, &),

since G,(t)=g,,:(t, 7). Repeating this argument gives that beS(m, g). Using the
corresponding argument with Theorem 3.6 in [7], we obtain that (2.20) is bounded in
S(mh"*1, g), which proves the proposition.

Corollary 2.5. Let acS(m,g) where g is locally o temperate, m is locally o, g
temperate and glg°=h*=1. Let y,9<S(1,G) be properly supported such that
lo|=c=0 on supp x and y/¢—1 vanishes of order N on the diagonal. If  has support
where D(x,y)=<e, ¢ given by Proposition 2.4, then

ey a7 = x4,
where r€ S(mh", g).
Proof. Let W=y/pcS(1, G). We have that the equality (2.21) holds if

a(x, &) = exp(—i(D,, D,,))W [x+‘§" x_"zt_) a(x, ”)lt==0

= 37 0 DY (x5 x5 ) ate e

modulo S(mh", g), which holds since y —1 vanishes of order N on the diagonal.
Thus the operator a} does not depend on the choice of x, if acS(m,g) is de-
fined modulo. S(mhY, g) and x=1 in a neighborhood of the diagonal.
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3. The calculus

We shall now develop a calculus for the operators defined in section 2. First we
consider the case when the symbols arein #(W). Let a, b¢ (W) and x, 0€S(1, G)
be properly supported. Then (22)~"d (3 (x+), y—x) 1(x, ) and (2m) "5 (3 (x+),
y—x)o(x,y) are the Schwartz kernels for the operators @ and b}, where 4, b
are the Fourier transforms in the ¢ variables. The composition ay b, has Schwartz
kernel equal to

3.1) @)~ [a(3(x+2), z—x) b (3 (z+1),y—2) 1%, D0 (z, y)dz

which is supported in {(x, y)eV®V; 3z: x(x, z)¢(z, y)#0}, thus is properly sup-
ported. In order to get a bound on the support of (3.1) we need the following simple

Lemma 3.1. Let D(x,y) be the squared G distance of (x,y)cVa@V to the
diagonal, defined by (2.6). Then there exist C,&>0 such that, for any x,y and z,

(32 max(D(x, 2); D(z, y)) = ¢ = D(x, y) = Cmax(D(x, 2); D(z, y)).

Proof. According to Lemma 2.2 it suffices to prove that

G (x—2)=¢
(33 {Gz(z——y) =g
implies
34 G.(x—y) = Ce

if & is small enough. The slow variation of G and (3.3) imply G,=CG, for small ¢, so

G (x—y) = 2(G,(x—2)+G,(z—»)) =2(1+C)s,

which proves the result. For later use we observe that (3.4) implies G ., =CG,
e
if ¢ is small, which together with (3.3) gives

Gﬂ(x'—y) =C"’%
G.5) s

Gx_ﬂ.(x—Z) =C’.
2

Thus Lemma 3.1 gives that (3.1) has support where - D(x, y)<Ce if x and ¢
have support where D(x,y)<e¢ and ¢ is small enough. Now choose ¥€S(1, G)
properly supported so that ¥ =1 on the support of (3.1). We want to find c€% (W),
so that

(3.6) ayby =cy,
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which is satisfied if
3.7
e(3G+y),y—x) =0 [6(3 (x+2), 2-%) b(3 z+2),y~2) 1 (x, Do (2, y) dz.

By taking the inverse Fourier transform of (3.7) and making a linear change of
variables, we obtain

B8 e =n"[[expic(tT; 2 O)alx+z E+Dbx+1, E+7)
Xx(x+z—t, x+z+)o(x+z+t, x—z+8)dzd{dtd

= exp [%O’(DZ,D;; D,,D,)) a(x+z, E+Ob(x+t E+17)

Xx(x+z—t, x+z+0)p(x+z+t, x—2z+1) ,=,;=00.

Now we are going to extend (3.8) to general a€S(my,g;) and beS(mg, g),
where g; is locally ¢ temperate and m; is locally g, g; temperate, j=1, 2. According
to the proof of Lemma 3.1, the integrand in (3.8), for fixed x, is supported over a
fixed bounded G, , neighborhood of (x,x)éV @V if x and ¢ are supported in a
sufficiently small G neighborhood of the diagonal. In fact, if

¥(x+z—t,x+z+D)ox+z+t, x—2+0) =0

then by substituting x+z—¢, x+z+¢ and x—z+1¢ for x,z and y, (3.5) gives that
G.(2t)=C’¢ and G.(2(z—1))=C’e. Thus, if g, p€S(, G) are supported where
D(x,y)<e and ¢ is small enough, then the slow variation of G and the inequalities
G=g;, j=1,2, imply that the integrand in (3.8) is a symbol in S(@#, §), where
W (wy, wo) = my(wy) my(we)
and
Gurwe(t1s 1) = 81w, (B + 82,0, (), Wy, LEW,

is a metric on W@ W. Obviously,  is slowly varying, 7 is § continuous and G=g.
Let B be the quadratic form on W@ W defined by

B(wla W2) = 20— (W19 WZ)’ (Wls WZ)E WQW
The dual metric of § with respect to B is equal to

5 Ia(t19 t]’.)+a(t29 ’;)IZ
& wo(ts 12) = sup > ;
sl 1) .ty 81,0, (13) + 82, (1)

= gf w, (8 + 25w, (t)-

In order to extend (3.8) to general symbols we need to know that £ is locally B tem-
perate with respect to the diagonal in W @ W, s is locally B, § temperate with re-
spect to the diagonal and that §=g® on the diagonal.
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When w,=w,=w, we find

(3.9 Et, ) =8, 1) ViEW
if and only if
(3.10) &w(® = g8, VW,

which is equivalent to
g2,w(t) = gf,w(t)a VtEW

The conditions for g to be locally B temperate and 7 locally B, § temperate with
respect to the diagonal are

(3.11)
81wt + 85w (1) = C(81,w, (1) + 85,y D) (1485, 0, (Wa— W) + 25,y (W1 — W)Y

and
(3.12) my (W) me(wp) = Cmy(w) mz(W)(l +81”,w1(W2—W) +82,w, (Wl“W))N,
when G (x,—x)+ G (x,—x)=c; w=(x,&) and w;=(x;, {)EW. When w;=w,
Jj=1,2, this reduces to
{gi’,w(t) = ng, wo (t)(l +gg,w(W0—W))N

250 = Cgg ,,,(O(1+ g7, (wo—wW)¥,
when G,(x,—x)=c; and
{ my(wo) = Cmy(W)(1 485, (Wo— W)Y

m2(W0) = sz(W)(l +g£w(WO—-W))N,

when G,(x,—x)=c; wand wy=(x,, £,)EW. Conversely, we shall prove the follow-
ing result.

(3.13)

(3.14)

Lemma 3.2. Assume that g,, g, are locally ¢ temperate and that m; is g; contin-
wous, j=1,2. If (3.13) and (3.14) are satisfied, then § is locally B temperate and
is locally B, § temperate with respect to the diagonal in W W.

Proof. Put
M= 1+gg,w1(w2_W)+gg,wa(wl_w)s

then according to (3.13) and (3.14) it suffices to prove that
{gi',w(wz—W) = cm®
gg,w(wl—w) = CMN,

when G, (x;—x)+G,(x,—x)=c. If ¢ is small enough we obtain, by the slow varia-
tion of G, that

(3.16)

(3.15)

{le(xg—»x) = Cc
Gxg(xl-—x) = CC,
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which gives

1+gf,w1+Wg—w(W2_w) = C(1+giw1(w2—w))N+1 = CMN+1
and
1488wy 4 wo—w (W1 —W) = C(1485 4, (W — W)V *1 = CMV*!

for small Cec, since g; is locally o temperate. Also (3.13) and (3.16) imply

d gf,Wg(WZ_W) = Cgi'.,w1+wz—w(w2_w)(1 +g‘2’,wZ(w1—w))N = CMN/
an

gglwl(wl_w) = ng,w1+wz-—w(wl—w)(l +gf’wl(W2—W))N = CMN,-
Thus we find
gl w(Wa—w) = C(1+g7 ,,(We—w)'+1 = CMN

and
880 (01— W) = C(1+85, i —W)'+* = CMY,

when G,(x;—x)+G,(x;—x)=c and c is small enough. This proves (3.15) and the

lemma.
Now by using Theorems 3.5” and 3.6 in [7], Lemma 3.2 and the fact that

sup g~w,w/g~£,w = sup gl,w/gg,w = sup g2,w/gg,w
we obtain the following

Theorem 3.3. Let g, and g, be locally 6 temperate Riemannean metrics in
W=V&V’, satisfying (3.10) and (3.13). Let m; be g; continuous functions on W satis-
fying (3.14), j=1, 2. There exists ¢>0, so thatif y and @€S(], G) are supported
where D(x,y)<e, then (3.8) can be uniquely extended to a weakly continuous bilinear
map from S(my, g)XS(ms, g5) to S(mymy, g), where g=max (g, g). If

(3.17) h? = sup g,/g5 = sup g,/g{

then for any N, the remainder

G18) (6 H-3, 4 (%G(D,,D;; Dt,Dt))Ja(x+z,£+C)b(x+t,5+‘c)

X x(x+z—t, x+z+Dox+z+t, x—2z4+[jlt=c=0 »

z={=0
where c is given by (3.8), is weakly continuous with values in S(mymyh", g).

Remark. When y and @=1 in a neighborhood of the diagonal, then (3.18)
gives the usual formal Weyl calculus. The G neighborhood, in which y and ¢ have to
be supported only depends on the constants in the slow variation of G and in Defi-
nition 2.1. Also c(x, &) in (3.8) has support where x has a fixed G, neighborhood
intersecting both the projection of supp @ and suppbon V.
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The dual metric to g=max (g,, g5) is
(3.19) g (w) = ., _énf_ (gi"(wl)llz +g2 (w2)1/2)2.
1+ Wy =w

The metric g is obviously slowly varying and m,m, is g continuous, since g;=g,
j=1, 2. We shall digress to study the conditions for g to be o temperate and to satisfy
g=g°. Observe that g,=gj does not imply g=g°, for example when g;=g;<
g,=gJ. But if g=g° then

gjégégaégga j,k= 1’2'
Conversely, we shall prove the following

Proposition 3.4. Let g,, g, be o temperate metrics on W satisfying (3.13) for ali
w, woEW, such that g;=g$, j=1,2, and g,=g;. Then g=max(g,,8y) is ¢
temperate, and g=g°. If in addition m; are o, g; temperate, j=1,2, and satisfy
(3.14) for all w,wyeW, then m; are 6,g temperate, j=1,2.

Proof. To prove that g is o temperate, it suffices to show that

(3.20) 2w = Cgj o (1+85(We—W)Y
for all w, weeW, j=1,2. According to (3.19) we can choose w,€W so that
(3.21) 8o (wo—w)2 = g7, (wo—w)"/2+ g3, (w1 —w)"/2.

If (3.13) holds and g; is ¢ temperate, then

giw= Cg.i:W1(1+gg,w(W1—W))N, j=12
and

gj,w1 = ng,wo(l'l'giwl(wo—wl))lva J = 19 2'
Since
glﬂ,wl(wo‘_wl) = Cgf.w(wo_wi)(l +gg_w(W1—W))N,
we obtain (3.20). The same argument works with m; instead of g;, so m; is 0, g
temperate.
In order to prove that g=g°, we observe that

_ lo(t, O _ ,
a®= SBP—gT(?)— = g7 (D), ViEW

is ‘equivalent to

(3.22) lo(t, )P =gl (¥)gs (1); V1, L'eW.

Now, for every t,t'¢W we can find w,w €W such that
g (0? = g7 (t—w)2-+ gf (W

& (V2 = gf (¢ — W)+ gg (W)

and
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at wy. Then, since g,=g;7 and g;=gj, j=1,2, we obtain
o, )| = lo@—w, ' —w)+o(t—w, w)+ow, ' —w)+o(w, w)|
= gf (t—w)VR gl (' — w2+ g7 (1 —w) 2 gg (W2
+85 (W)2gf (' —w')2 + g (W2 g (W)/? = g° ()2 g° (1)

at wy, which proves that g=g° and finishes the proof of the proposition.

In general, we do not expect g to be locally ¢ temperate when g,, g, are locally o
temperate and satisfy (3.13), since w, in (3.21) need not be in a lifted G neighborhood
of wand w.

Example 3.5. Let f(x)€CY(R") satisfy
|lgrad f(x)| = Cf(x)**?
1 =f)
G (D) = [t f(x)
g et ) = |tPA(x, OP +[tPA(x, &)~
where y=dé=p=1, <1, and

A(x, &) = (f(x)*+1&P)M
Then G is slowly varying, g is locally ¢ temperate, and g/g°=A(x, £)**~9=1.

(3.23) {

where 0=y<1. Put

and

4. Continuity in C= and L?

In this section we shall prove that the operators @ are continuous in C* and
2’. We then get a calculus for these operators according to Theorem 3.3.

Theorem 4.1. Let g be a locally o temperate metric on W, m locally o, g tempe-
rate and g=g°. There exists £¢>0 such that if x€S(1,G) has support where
D(x,y)<e and acS(m,g), thena} isa continuous map from C=¥) to C* (V) and
Jrom D' V) to D' (V).

Proof. Since x is properly supported if the G neighborhood is small enough,
C* continuity implies Cy continuity, which by duality gives 2" continuity. We are
going to prove that, if x(x,y) has support where G.(x—yp)=c, and ¢ is small
enough, then for all N there exists M with the property that
4.1) 2 qen P u) =C 3y sup  |DPu(x)].
= =M G

x—xg)=c

Here the constant C depends on G, , g, o and m(xo, 0).
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Choose a partition of unity >¢;=1 in W and neighborhoods U; of supp ¢;
such that

supp @; S {w: g, (w—w) = ¢} S Uj = {w: g,,(w—w) = ¢y},

Co=<cCy, @, is uniformly bounded in S(I, gw) g, and m(w) only vary with a fixed
factor in U and there is a bound on the number of U} having non-empty intersection
(see Lemma 2.5 in [7]). Choose cy<c;<c, and put

U; = {w: g, (w—w)) = c;}.
Let a;=¢;a, and consider
ay yu(xe) = )™ [ [ exp (i (o=, EN 2 (%or ¥)a; (5 (o +), &) u(y) dy d¢,

Since y(x,, y) has support where G, (x,—y)=c, we find that the G, distance from
X, to the projection of U is less than cl/ %/2 when x,€supp ay u. Then, for small c,

G,, = CG, = Cg, ;= C'g,,

if (x,8)eU;. Thus G, (x—xo)=c when (x,&)cU; and x,Esuppa} u if candc,
are small enough, which we assume in what follows.

Now, if y has support in a sufficiently small G neighborhood of the diagonal, it
follows from the slow variation of G that

Ce ()3 u(y) ~ x(x, »)u(NECT V)

is continuous with continuity constants only depending on G,,- Thus (4.1) follows if
we show that for all N there exists M such that

4.2) Z’la]éN |D*a¥ u(xy)| = CZ]ﬂ[gM sup [Df ]

if u€Cg has support when G, (x—x,)=c. When proving (4.2) it suffices to con-
sider the case a=0. In fact, integration by parts gives

{t, Dyaru = af ({t, Dyu)+b}u,

where b;(x, &)=(t, Dya;(x, )€ S(m,(w)), gwj) uniformly in j, and m,=mg(t, 0)*
satisfies the same conditions as m. When «=0 we have

@3) a3 u(x)] = Clajl Jul = = C'm(w;) (det gy )™ ul =

and we shall improve this estimate by using integration by parts.
Let L(x, &=, &)+(r,x) be a linear form on W. Then

—L(y—x, & exp (i{x—y, &)) = L(Dg, D,) exp (i{x~y, £)),
so integration by parts gives

4.4) ayu=>bYu+cy({t,D,)u) at x,,
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where
bi(xa é) = (% <ts Dx>+<13 Dé))cj(x, 6)
and
f Cj(xa 6) = aj(x’ 6)/Z(x’ 5)
1
4.5) L(x, &) =L(2(x—x), ) #0 when (x,EU;.

Lemma 3.1 in [7] gives
Lw)/Lw)eS(L, gu,)
uniformly when wésuppa;, if L0 in U;. Thus

cje S(m (Wj)/z(wj)’ gwj)
and

¢ 1/2
bjES[m(wj)gWJ (7, T] /z(wj), gw_,]
uniformly. By repeating this argument we obtain

4.6) lay u(xp)] = Cym(w)) (det g, )~ V2 Ry ¥ 2]ﬂ|§~ sup |DAu|
- t .
it Ry=L(w)), L(x, &={t, &)+2(r, x~x)#0 in U; and 8w, (—2-, 1:)§ 1, since

G, (1) = CG,, [-2’-] = Cg,, [% 1:] =C

when G, (x;—x)=c. As before, we put

4.7 gann = sup [Kt, m)+(»s DI/ 8w (t, 7).

Since v
L@ 0P _ [LQG—x), OF _ , K2, )+ (x—xo, D
2,(t12,7) g, (12,0 8w, (#2,7) ’

the Hahn—Banach theorem gives that we can take R, equal to 2 times the gﬁj dis-
tance from (x,,0) to U;. Thus we obtain

48 layu(ol = Cm(w) [etg,)2(1+d)~ 3, sup |D%ul,

where
a2 = 325, g, (W — (%o, 0)).

Now we need the following
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Lemma 4.2, Under the assumptions above, there exist constants N, c=0 with
the property that for any x,€V there is a constant C such that

4.9) 8xp0 = ng,g(l + 84 ((x— x5, O,
4.10) m(x, &) = Cm(xy, 0)(14+ g2 :(x—xp, O
when G, (x—xg)=c; and

@.11) S(+d) " =C

if the sum is taken over those j for which
G, (x—x) =c when (x,HeU;.
End of proof of Theorem 4.1. Choose w'=(x’, £')¢ U, ‘such that
4} = gl (%" —xo, &).
‘Then (4.9) and the minimax principle imply
(det g, )72 = C(det g,,) 72 = C”(det g, o)~ V2 (1 +d )™
when Gxo(x’ —Xp)=c. Similarly, (4.10) gives
m(w) = Cmw") = C’'m(x,, 0)(1+d)*.
Thus, using (4.11) we obtain from (4.8) for large N
2 laf u(xo)l- = Cm(xo, 0) (det g,,,0)~"* 3 5 oy sup |DPu]

if u€Cy (V) has support where G, (x—x,)=c, and c is small enough. This com-
pletes the proof of the theorem.

Proof of Lemma 4.2. First we observe that since g and m are locally ¢ temper-
ate, there exist O<c, C such that

(4-12) I/C = gx.O/gxo,o = C
and
(4.13) 1/C=m(x,0/m(x,,0) =C

when G, (x—x,)=c. Here C only depends on g5 , and G, , and c is independent
of x,. Also, we can find C such that

(4.14) 820,05, 0) = CG, (1) ViV

Since g4(t, 1)=g°(t, —1) and g is locally ¢ temperate, we obtain by using (4.12)
that

(4'15) Ex0,0 = Cg2x—xo.0 = C,gx.§(1+g§,¢(x'—x0’ E))Ns
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when G, (x—x¢)=c, and c is small enough, because
G ((2x —x0)—x) = G (x—xo) = CG,,(x—xp) = Cc.
This gives (4.9). Also we find

(4.16) g, .= Cg2x—xo,0(1 +g§,§(x—xo, é))N = C,gxo,o(l +3¢,§(x—xo, 'f))N
when G, (x—x,)=c. The same argument works for m(w) instead of g,,, so we get
(4.10).

To prove (4.11) we observe that by (4.12) and (4.14) we have

(4.17) 8o 0(X =X, §) = 2(g,,0,0(2 (x —x), 0) + 8x,,0(Xo— X, f))
= C(1+ gax—xp, (X0 =%, &) = C(1+ 88xx0.0(X0— X, §)) = C'(1+ g7, ;(x—x0, OV
if G, (x—xp)=c is small enough. Now, the estimates (4.16) and (4.17) and the slow

variation of g are sufficient for the proof of [7; Lemma 3.4] to go through in this case,
so we get (4.11) for large enough N. The details are left for the reader.

Remark. 1t is easy to see that the number of derivatives needed in the C* esti-
mates of ayu only depends on the constants in Definition 2.1.

Theorem 4.3. Assume that g is locally o temperate on W and that g=g°. There
exists ¢>0 such that if y€S(1, G) has support where D(x,y)<e and acS(1, g),
then ay is L* continuous.

Proof. Choose a partition of unity Z¢,;=1, ¢;€ S(l,gwj) and neighborhoods
U;cU; of supp ¢; as in the proof of Theorem 4.1. The proof of [7, Lemma 5.1]
gives, with L? operator norms

(4.18) lay G, D) = @m)~* |zl [ 4l = |22~ lalree

if a(x,HeFL (W) and x(x,y)eCFaV).
Since the Fourier-L! norm is invariant under affine transformations and can be esti-
mated by seminorms in %, this gives

4.19) lay.l=C Vi
Since we are going to use the lemma of Cotlar, Knapp and Stein, we consider
(4.20) (af )" at. = @fy iy
and
@.z2n ay (ar )" = a} ary,

whiere 1 (x, y)=j%(y, x). Naturally, it suffices to consider (4.20) in what follows.
Choose @€S(1, G) such that ¢(x,y)=1 when there exists z€V so that either

V(x,2)x(z, ) #0
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or
x(x, 2)Y(z, y) # 0.
Then
i Ak, = (a} )" ax,
i
4.22) a;(x, &) = exp [% o(D,, D;; D,, D,)) i(x+z4+t,x+z—1)

Xxx+z+t, x—z+0)a;(x+z, E+)a(x+1, E4+T)|=¢=0-
t=1=0

As in the proof of Theorem 3.3, if y has support in a sufficiently small & neighbor-
hood of the diagonal, then we can use the estimates (3.10) in [7, p. 369] and (3.11) to
obtain
(4.23) lapW) = Cy(1+82w)~%, YN
where

5B — : G —w’ : c —w”

g8w) = mip g(w—w)+ mig & (v—w".
We also obtain that g is ¢ temperate between supp a;, U; and Uy, ie.,
(424) gw1 = ngz(l +g:,l(W1—W2))N,

when wy, wysupp a WU;UU, and a;z0.
Now, the estimates (4.18), (4.23) and (4.24) are all that is needed for the proof of
[7, Th. 5.3] to go through in this case. The details are left for the reader.

Remark. The G neighborhood in which the cut-off function y has to have sup-
port, only depends on the constants in the slow variation of G and in Definition 2.1.
The L? operator norm of a) only depends on the seminorms of ain S(1,g), of ¥
in S(1, G) and the constants in the slow variation of G and Definition 2.1.

Corollary 4.4. Assume that g is locally a temperate on W -and that g=g°. There
exists >0, such that if x€S(1, G) has support where D(x,y)<e, a€S(m,g),
where m is g continuous and m—0Q at e, then-ay is compact in L*(V').

Proof. Since m is bounded, we find S(m, 2)ES(1, g) with fixed bounds on
every seminorm. Thus, if we choose the G neighborhood as in Theorem 4.3 we obtain
that g} is L* continuous. Let {¢;} be the partition of unity used in the proof of Theo-
rem 4.1, and put a;=¢;a. Since m—+0 at -, we find that for every ¢>0 there
exists N, such that

a—2,.ya;€Sk g if N=N,

uniformly in ¢. The remark after Theorem 4.3 gives a constant C such that for every
e>0, the operator norm in L%

|\|a}"—2j§N al,|=Ce if N=N,
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so
”a‘;_z‘iélv a}fz” -0 as N —oo,

Since 4} , is compact in L2(V), we obtain that g} is compact, which proves the theo-
rem,

5. Hilbert—Schmidt and trace class norms

The Hilbert—Schmidt operators on L?(R") are those with kernels in L2(R"XR")
and the Hilbert—Schmidt norm is equal to the L norm of the kernel. Thus if a;/ (x, D)
is defined by (2.8), then the Hilbert—Schmidt norm is equal to

.1)
lazlis = @my~> [ [a (3 +y), y—x) x(x, )| dxdy = @m)~"|x|3= | ali:

by Parseval’s formula, here 4 is the Fourier transform in the £ variables.
The trace class operators are those which can be written as a composition of
Hilbert—Schmidt operators, and the trace class norm is equal to

(5.2) (4]l = Aing, [ 41]gs [ 43l us-
The argument of {7, p 415] gives
(5.3 tray = (2n)"”ffx(x, xXa(x, &dxdé

if a} is of trace class, a€ L'(R™) and y€L™(R™).
We shall now estimate the trace class norm. The proof of [7, Lemma 7.2} easily
gives that a is of trace class and

54 "a;tv“tr = C2|z[+...+lﬂ'[§2k D% xll L= “xﬁ éng'Di"allu

if the right-hand side is finite and 2k=>n.

This shows that if @ and x€ #(R*) then aj is of trace class with the norm de-
pending continuously on a and y in & (R¥). In the following, the metric g need not
be locally o temperate, but we assume that g is a slowly varying metric on R, satis-
fying

(55) Gx(t) = gx,{(ta t) = hg(xs é) g;,ﬁ(t’ T)
for all (x, &), (¢, 7), where h=1, and m is a g continuous function.

Theorem 5.1. There exists £=0 such that if x€S(1, G) has support where
D(x,y)<e¢ and acS(m,g), then for every integer k=0,

(5.6) laxle = Gi(lals+ [ B m]rs{al),

where ||a|| is a seminorm of a in S(m, g) whose order only depends on k.



The Weyl calculus with locally temperate metrics and weights 77

Proof. Choose a partition of unity Z¢;=1 and neighborhoods U; of supp ¢;
as in the proof of Theorem 4.1, so that ¢;€S(l, gw) uniformly, w;=(x;, ;). By
the triangle inequality for trace class norms, we obtain
(5.7 layle = 2 1a}, 4l
where a;=@;a. Since G=g, we may assume that

G,/C = G,, = CG,

when (x,&)eU;, by taking a refinement of the partition of unity. Choose
Y,eS(, ij) uniformly such that ¥;(x)=1 when (x, £)¢suppa; and ¥;(x)=0
when (x, {)¢U;, V& This gives

at,=ay}

Jx 12y

where
206 ») = x5 ») ¥, (5 6 +))

is uniformly bounded in S(1, Gx x) and has support in a fixed, bounded Gx .
neighborhood of (x;, x;) if x has support in a sufficiently small G neighborhood of the
diagonal. We now need the following simple

Lemma 5.2. If a and yc P(R*®) then
(58 lazle = @m)"*" |2 [@*]y = Ixlerz]a”]ers

where % is the Fourier transform of y.

End of proof of Theorem 5.1. Since the Fourier-L' norm is invariant under
affine transformations and can be estimated by seminorms in &, we obtain from
(5.8) that

(5.9) la3, ¢ ler = Clay o

Now, [8, Theorem 3.9] gives

(5.10) @}l = Crllalzn+hGwy)* (det g)~2 sup la ()
with N depending on k. This implies

G.11) 2 la}le = Cu(lale+ [ B m] 2 al)

for every k=0, where |la|| is 2 seminorm of a in S(m, g) only depending on k.
Combined with (5.7) and (5.9), this proves the theorem.

Proof of Lemma 5.2. We shall prove (5.8) by Fourier decomposition of
x(x, VEFLR™. Let L(x,y)=L,(x)+L,(y) be a linear form on R* and put

(5.12)
apu(x) = @m0y [ exp(i(x—y, E+iL(x, y))a (3 x+2), &) u(y) dy dt,
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u€Cy (R"). Then

a} = exp (iL,(x))oa"oexp (iLy(x)),
which gives
(5.13) laZlle = [a*[.

by (5.2), since multiplication by exp (iL;(x)) is unitary on L2(R"). Fourier decompo-
sition of y(x,y) gives

lazle = @)= [ Zle |a"}e,

since the trace class norm depends continuously on y in &(R*). This proves the
lemma.

6. The Weyl formula

In this section we shall generalize Hormander’s estimate [8, Th. 4.1} of the error
term in the Weyl formula for the number N(1) of eigenvalues =1,

NG =@n—ff B dx dé

x,§=2

for certain pseudodifferential operators with symbol p(x, £). In fact, Hérmander’s
proof of that result goes through for the locally temperate case, with minor changes.
We therefore only state the results.

Let g be a metric on R* which is locally ¢ temperate and satisfies g/g"=h*=1.
Assume that p is a locally o, g temperate function, such that p is a symbol of weight
p, ie. peS(p, &) ~

In what follows, we assume that the cut-off functions x€S(1, G) are supported
in a sufficiently small G neighborhood of the diagonal, so that ay is L* continuous
when a€S(l, g).

Proposition 6.1. Let pcS(p, g) such that p=ch™ and assume that x(x,x)=1
and y(x,y)=x(y, x). Then p defines a self-adjoint operator P on L® which is bounded
Sfrom below. If p(x, &)~ when (x, £)-» oo, then P has discrete spectrum.

The proof is just a modification of the proof of [8, Th. 3.4]. Observe that we can
impose any restriction on the support of y in the proof. In fact, if Y€S(1, G) has
support in a sufficiently small G neighborhood of the diagonal, |x|=c=>0 on supp
and Y=y in a neighborhood of the diagonal, then Corollary 2.5 gives

Py =pytry,

where reS(h¥p,g)SS(1,8), so r} is L? continuous.
Let peS(p, g) satisfy

6.1) sup g/g® = h*=cp~™, y =0,
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and

6.2) I+ x| +1¢] = ep(x, O

Let x€S(1, G) satisfy x(x,x)=1 and x(x,y)=x(y, x). Let N(A) be the number
of eigenvalues =4 of P=p} and put

6.3) W) =@ [ f,, dx dé.

(x, =2
The methods of [8] and the results of the earlier sections give the following result.

Theorem 6.2. If 0<38<2y/3, then there exists a constant Cy such that
©.9 INAD~WM)| = C;(WOA+11-0) W (A—217%)
for large 2.
Observe that the right-hand side of (6.4) tends to <o with 4 (see [8, p. 309]).
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