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1. Introduction

The purpose of this paper is to prove pointwise inequalities and to establish
the boundedness on L? (weighted) spaces for pseudo-differential operators with sym-
bols ¢(x, &) in the class S;57%, 0<a<I1. The prototype of our results is a theorem
of Chanillo [1] for the particular case o(x, &)=¢"*1"0(£)|¢|~"/%, where 0(¢) is a
smooth cut-off function vanishing in a neighborhood of the origin. We point out,
however, that whereas Chanillo’s results make extensive use of the kernel formula,
the method used here is to break up the symbol instead, in a2 manner compatible
with the decomposition of the function. This idea may also be used to establish weak-
type (1, 1) inequalities as has been done by Chanillo, Kurtz and Sampson [2].

In order to state our results we begin by introducing the relevant notations and
definitions. We say that a symbol a(x, £) is in the class 8% 5, Or that €Sy ;, if
for x, & in R”,

KAl
o 98

o (x, E)' = ¢ p(14[E]ym—elpl+olel,

We will consider in this paper pseudo-differential operators ({.d.o.) with symbols
o(x, €Sy ;, that is we consider operators T given by

Tf() = [, e Pa(x, DI (@) dL,

where f'is a Schwartz function and f denotes the Fourier transform of f.

In addition to the well-known L? results for some classes of {.d.o. we mention
here that more recently sharp L? boundedness results for operators with symbols in
the class S;#, ; with 0=6<a—1<1 and B<na/2 have been established by C.
Fefferman [4].
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We set

1 ) 1/p
M,76) = sup (o [ oawas)

where Q is a cube with sides parallel to the coordinate axes. This is the generalized
Hardy—Littlewood maximal function of f. We also need the sharp maximal function
f¥ of f which is given by

1
S*@ =spi S, 0 —feldy,

1
where fQ:@ [o fO) dy.

For a general symbol o¢(x, é)eS;_",‘,’fﬁ, 0<d<1—a, O<a<]1, we will show
that for fECg (R"),

Ly (T )* (x) = cM,f(%).

A proof of this assertion may be found in Section 2, Lemma (2.4). An interesting
open question is whether (1.1) is best possible, i.e. whether 2 is the smallest index that
may be used in the right hand side of the inequality. If one is willing to specialize
the symbols o (x, &) then it is possible to obtain sharper results. The main result proved
in this paper is

Theorem (1.2). Ler O<a<l1, and o(x, E)ESTs%. Consider the y.d.o.

@) = [ &=+ iIa(x, HF Q) de.
Then for l<r<e and fcCg(R")
(TN* () = e M, f(x).

Theorem (1.2), and of course Lemma (2.4), lead to various weighted L? inequa-
lities. We list some of them as a theorem but do not prove them as the proof tech-
nique, once we have the pointwise estimates, is by now well-known. We refer to
Kurtz and Wheeden [7] and Miller [8], for instance, for further details.

We adopt the usual notation that

1 lpow = ([ o I/ @ w(x) dx)?
and we say that wcd, if

sup [l—é—lfg w(x)dx] (I—Q—lﬂfe w(x)‘lf("‘l)dx)p_1 =c.

Q

Again, as usual, 4_={J,=14,. We then have
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Theorem (1.3). Let Tf be a y.d.o. with symbol ¢o(x,£)eS;™, d<1-a,
O<a=<l.
(@) Let wEA,, then, for O<p<oe and feCy(R"),

”Tf”p,w = cp"M2f”p,W'
(b) Let w€d,p, then, for 2=p<oo, and feCyR"),

1T lpw = €51 10w

Theorem (1.4). Let Tf be a y.d.o. with symbol €'°a(x, &), o(x, E)ESL T
and 0<a<1.
(@) Let weAd,,, then, for 1<r<oo, O<p<o and fEC;(R"),

TF 5w = cr, ol Mr S, -
(b) Let wcd,, then, for 1<p=<eo,

1Zf 15w = ol flp,w-

We would like to point out that it is possible to prove weighted weak type (1, 1)
estimates for weA,, for y.d.o’s with symbol e"6(x, &), o(x, E)€ST"". The
technique of the proof is based on the decomposition lemma of Chanillo in [1].

2. Preliminary lemmas

‘We begin by introducing a notation. By [x[~¢ we denote the fact that the values
of x in question lie in the annulus {x€R": ar<|x|<bt} where O<a=l<b<c,
and the precise values of a and b are irrelevant.

Lemma (2.1). Let o(x,£)eS;™%, 0<é=1 and O<a<l. Let k(x,w)
denote the inverse Fourier transform, in the &-variable and in the distribution sense of
6(x, &), that is informally

k(x, w) = [e@Wa(x, & de.
Then for [x—x,|=d=1/2 and N=z=l,
- — )24 )2
(‘[|.V—xo|"‘(2Nd)"" Vx> % —y) =k, %o=1) dy)
= ch __xol(l—a)(m—n/z)/(sz)m(l—-a)
where m is an integer such that n/2<m<n/24+1/(1—a).

Proof. The idea behind the proof is by now fairly standard. However, we do
point out that unlike the Calderén—Zygmund class of symbols, i.e. a(x, £)€S] ,,
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the exponent 2 in the integrand seems to be the largest value that can be used and the
proof below breaks down for exponents larger than 2.

Let Z"jgo 6;(§)=1 be a smooth partition of unity such that 8;(¢) is supported
in [¢]~29, j=z=1, and 0(¢) is supported in [€]=2. Let o(x,&)=3];0;(x, &),
6;(x, H=a(x, £)0,(£). Moreover, put

[ @00, (x, O] @ dt = St x=070)dy, j=0.
Thus k(x, w)=2,=0 k;(x,w). We now get
([ spmgpn £ 5= )=k, o= )2d7)™
= 270 ([ miamape o G =) Ky (s 3= )P YY)

We choose j; so that 2/|x—xg]~1, and break up the sum on the right above as
follows,

2f<jo (‘/.lr—-xol'v@Nd)l*ﬂ !k.] (x3 X "y) - kj(xO’ xo‘_'y)i2 dy)1/2
/
+ Zféfo (fiyﬁx 1~ (2N dyi-2 {ki(x‘” X0~ dy)l ’
+ ijja(,/‘i),_xD‘N(zN - 306 % R = L4+ L+ L, say.

We discuss I, and 7, first. Since both terms are treated similarly we only estimate ;
here. Now

I3 =¢ Z-"‘:‘jo (2N d)—"‘(1~n) (j‘1

Since {x—x,l=d=1/2 and |y—x,|~(2"d)'* in the above integral we also have that
for those y’s in question |y—x,|=c|y—x] Thus the right side above is bounded by

€ 2 jaj, @ Dy (f;
We may now majorize the above expression by
2 1/2
N N-~-m(l—a)
cZ’jéjo(2 d) Zw.—_m (f dé)

=c ngjo (ZN d)»—m(l-a) 2](—na[2—m(1—~a)+rx[2)'

lk; (%, x — PR Ly — x| dy)*

J"‘xo‘ N(sz)!_a

iy (x, x— p)[E]p —x[Pmdp) >

y~x0’ o~ 2Nd)l—a

I
o 5

The choice of m assures us that —na/2—m(l —a)+n/2<0. Thus the sum above is
dominated by

oL d)""‘(l”“) 2Jol—na/2—m(1~a)+n/2) < c(ZN d)*"'(l'“) i X — xol(mﬂnl‘z)(lw)‘
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We have finished estimating ;. We now consider I;. In the first place
1/2
2.2) L= 2i<io (fly—xoi~(2Nd)x-a lki(x’ x—y)—k;(xo, x—y)|2dy)
+2,.. o mayi-s 63 G X—=9) ey o, KXo~ )[2dy)

We consider the first term on the right. Since as we observed above |y—x,|=c|y—x|
we can bound this expression by

2j<jo @Y dy—ma-o (./|y_xo|~(2Nd)t-a (1 = Xo|™ ke (¢, 2 — ¥) —k; (%, x“)’)])2d.1’)1/2

= 02j<fo (2Nd)_mu_a) (fiy—onN(sz)l_a (|y—x]"' ij(x’ x—y) —kj(xo’ x—y),)z dy Ve

a aﬁ 2 1/2
=c, Q0 ( [ SUP |5, 5% %1 (n, é)l dé) [ — o

=c (Z'j i (¥ gy—m-a 2}(—na/2—m(1_a)+n/z+1)) [ — ).

The choice of m and the fact that 2/ojx—x,|~1 yields that the sum above is
bounded by c¢(2Vd)~™1-D|x — x |(m—n/DA-a)

We now consider the second term on the right in (2.2). In this case we first
dominate this term by

o, @ ama-a(f . (y —xol™ ke (xas X — p) =k (g %o —P))2dy) ™
By Leibniz’s formula we can majorize this expression by
2 1/2
€31, @0 ([ Ty @)

= N Jy—m(1-a) — e (171 2i(=na/2— 1Bl L—a) +n/2)
=¢ 255, C D™D 2 cm o ¥ Xl T 2T :

4c Z'j ; (2Nd)—m(1-—a) [x_xolzj(—na/z—m(l—a)+n/2+1).
<Jo

~(2Nd)1"“

b y
3257 (%o, &) 5357 (=% 1)

But jx—x,|=1/2 and since m=<n/2+1/(1—aq), it is easily seen that the second sum
above dominates the first one. Since 2/o|x—x,|~1, this second term is readily seen
to be bounded by c(2¥d)~"(~|x —x,|™~"P1-a a5 desired. This completes the
proof. Note that we only needed derivatives up to a finite order to obtain the conclu-
sion,

We shall recall one more fact about symbols in S7 ;, namely that the convolu-
tion kernels are essentially compactly supported.

Lemma (2.3). Let o(x,£)€S%;, O<g<l1, and let as usual
@

k(e w) = [ €9o(x, &) dE.



6 Sagun Chanillo and Alberto Torchinsky

Then for [w|=1/4 and arbitrarily large M,
Ik (x, w)| = cp W] =M.
Proof. Choose an integer M so that n<2Mpg. Then
WM kG wy =c [ €O (=dMa(x, §)dE,

where A, denotes the Laplacian in the ¢&-variable. Now |'(—A¢)M o(x, &=
cp(1+1E))~24¢ and since n<2Mp it follows easily that

[wiPM |k (x, w)| = cy

as we wanted to prove.
We now wish to show the sharp function estimate for general symbols o (x, £)€

—naf2
Sl—":{d'

Lemma (2.4). Let o(x, )€ ST, 0<a<1 and d<1—a. Let T be the pseudo-
differential operator with symbol o, i.e.

Tf(x) = [, €00 (x, OO dé.

Then for feCy(RY),
(T* (x) = cM, f(x).

Proof. The proof follows the lines of the argument in Theorem 1 of Feffermann—
Stein [5]. Fix a point x, and a cube 7 centered at x, of side length d. The non-trivial
case is when d=1, which we consider first.

Let f(x)=fi(x)+/f:(x) with fi(x)=f(x)x;(x), where J is a cube concentric
with I of sidelength d'—% Let o(x, &)=a(x, )"/ E] ™2 =q(x, E)|E]~™/%, say.
We note that g(x, £)€S]_, ; and by a result of Hormander [6], the ¥.d.o. with
symbol g(x, &) is bounded on L?(R"). We denote this operator by G. We also let
1/p=1/2—a/2. Then by the usual Hardy—Littlewood—Sobolev fractional integra-
tion theorem

S, 1TA@)dx = cdnr S Tf, ()P dx)™"? = ed? ( Jo1Gh ()2dx)"
Thus by the L? boundedness of G we get
S TAG) dx = cd? ( [ A ([2dx)"* = ed" M, f(x,).
We now estimate the term involving T/;(x). Since

If: () = [, k(x x~0AG) dy,
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letting ¢;= [gn k(x> Xo—¥) /o () dy we get, for x€l,
T ~el = [, kx, x=3) =k, %~ W) o()|dy
= Zna ([, mape K X=3) ko, %o =) dy) "

2 1/2‘
X(f - smiamap-e 20N 47)
Using Lemma (2.1) for the first term in the summands on the right above we get,
for |x—x,|=d,
lez (x)"cll =c 2’;:1 d(1~a)(m—n/2) (sz)—m(l—a)+n(1-a)/2M2f(xo)
= ¢ Jy., 2NE-m0=9 M, f(xe) = cMy f (%)

since m=>n/2. This concludes the case d=1.

In case d=1 we proceed as follows. Let 21 denote the cube concentric with [
but with sidelength twice that of . Put f(x)=f1(x)+f;(x), where f;(x)=7(x)xe(x).
By the boundedness of T in L?*(R")

[ 1Tha@dx = 2 ([ 1T dx)" = ca ([ 1f@)P dx)"* = cd" M, f(x).

To estimate Tf;(x) we simply use the rapid decay of k (x, ). Indeed we note by Lemma
(2.3) that |k(x, x—y)|=c|x—y|~*. Therefore

@l sef L, fON k=" dy

and since |x—x,|=d a well-known argument, similar to that of Theorem 2 in Chap-
ter 3 in Stein’s book [9], shows that

[ Te(x)| = M, f(x,)

in this case. Combining all these estimates, and since I is arbitrary, we obtain the
desired conclusion.

Lemma (2.5). Given o(x,£)€S;"%, 6<1-a, then for 1<p<e we have

1771, = ol f1,-

Proof. From Lemma (2.4) it follows by Theorem 5 of Fefferman and Stein [5]
that the result is valid for 2<p<os., We now consider T*, the adjoint of T. Itis
also a \r.d.o. with principal symbol in ST/ if §<1—a, by a result of Hérmander
[6]. Thus T* is bounded on L*(R"), 2<p=<<co, by Lemma (2.4). This means that T
is bounded on L°(R"), 1<p<2, and consequently on L*(R") as well, by interpola-
tion. This completes the proof.
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We shall now proceed to prove some lemmas which are to be used in the proof
of the main result. 8(£) denotes a non-negative, smooth radial function so that

1 =1
e(¢)={0 g = 1/2.

Lemma (2.6). Let o(x,£)€S), and define
Gy f(x) = [, e+ (&) [¢|~"E-p-1D g (x, &) (§) dE.
Then, for 1<p=2 and 1/p+1/g=1,
1G, £l = ¢l A1,-

Proof. We will prove this theorem by using a complex family of operators which
we define, for the complex parameter z, as follows,

G.f() = [ =0~ " ax, OF () de.

lfI’

In the first place observe that if Re z=0, then by the L? continuity alluded to
before we clearly have that

()] Gz flle = el fle-
Next let Rez=n(2—a)/2, Imz=y. In this case

@®) 6. 1) = [ 9 LOLT o, 07 (e

= [ =9k ©)q(x, OF (&) de,

where k(£)=0(&)eI|E["2=9/2 and g(x, &)=|¢]" Yo (x, £), say. Let 4 denote the
yr.d.o. with symbol k(%) and B the y.d.o. with symbol g(x, £). As is well-known
the symbol o, 5(x, &) corresponding to composition of 4 and B is given by
the asymptotic expansion

b w,fc(é) 5 165, 9

= ]%(é) q(xa 6)+20<Ia[<’v (.4 361 k(é)axa q(x €)+r(~x é)

Because of the explicit form of the kernels involved the reader can readily verify that
we have

[r (e, O = c(1+D~C+D,

provided N is chosen sufficiently large, in fact N=(1+#na/2)/(1-a) will do. Conse-
quently, and referring back to formula (2.8), in order to obtain the desired estimates
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in this case it will suffice to consider the Y.d.o. with symbol

(2.9) aAoB(x’ 6) ZO<IG[<N « Bf“ k(é)axa q(x é) r(x’ 6)
We readily see that

210) || [, €®Ortx, OF@ |, = ¢ fA+E)- "+ de| £l = cf flm

where H'(R") denotes the Hardy space, see Fefferman and Stein [5). Similarly, since
g(x, £)€S;, by Theorem 26 in Chapter 4 of Coifman and Meyer’s book [3] it
follows that B maps H*(R") into L'(R") boundedly. From Theorem 9 in part II of
Wainger [11] we also know that the kernel k(x) corresponding to 4 is in L™ (R").
Therefore

1S o €0 0u0n(x, 07 dt|_ = clikla=|| [, &> Pa(x, ©F @ a¢,

= cllkf o= (L +|yDM | £l
as well.

To treat each summand in the sum (2.9) we proceed in an identical fashion.
To illustrate this point fix &, 0<j=|a|<N. We have to deal with a term of the form

3@ T o 458 = k(Daulx, O say.

Again by the results of Wainger we know that the kernel k,(x) is in L= (R") and since
a(x, £)€ST o, We can write a similar expression to that appearing in (2.9) but now
with the sum consisting of terms of the form

Z,0<[/3|<I‘J jcﬂ aép k (é) axp+a (I(x, é)

Iterating this procedure, after a finite number of steps, we obtain only principal
terms which can be treated as o, ; and remainder terms which can be treated as it
was done in (2.10). Collecting our estimates we finally obtain that for

Rez=nQ2—-a)2, Imz=y
2.11) 1G:fllee = c(L+1yD" I a2 -

We are now in a position to interpolate between the inequalities (2.7) and (2.11).
A simple argument, outlined on p. 159 of Fefferman and Stein [S], shows how we
can apply Corollary 1 on p. 156 of that paper to obtain the desired result. Our
proof is thus complete.

We would like to point out a simpler version of the above lemma which proves
helpful later on. ‘
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Lemma (2.12). Let o(x,£)ES) , and define, for fixed €R",
G,f(x) = fR.. %9 glltle g (&) |E|-"@-WP~12D) 5 (1, £) F (&) dE.

Then for 1<p=2 and 1/p+1/g=1,
1Gofllg = c, IS 15

Proof. The proof uses the same ideas as that of Lemma (2.6) and may be deduced
from it by treating t as a fixed parameter.

Lemma (2.13). Let n(6)éCy(R™) and radial. Assume that suppnS{E:
O<ry<[é|<r}, 1o, 1y are some fixed real numbers. For A=1 and 6 real we define

R (©) = [EPnEIDF @)
IRiflp = ;21 flp, 1=p =

Proof. Rewriting (R, f Y (E)=A(JEIAMENFE), we see that R, fx)=
=AY, *f)(x), where Y(x) is a Schwartz function and ¥,(x)=A"y(4x). Thus

IRfllp = 21axfl, = 210alilfll, = 2] £,

Lemma (2.14). Given @(&)€Cy (R") such that supp ¢ S{{: 1<|{|<2} define
@, O=0&/2) and let

Then

g = [ €O LPpi@)de.
Then
igl, = ca®*™e, 1/p+1/q = 1.

Proof. We mnote that |£°0,(&)=2°(1€|/A)°p(E/2). Thus g(x)=A**"y(Ix),
where  is a Schwartz function; the conclusion then follows by a simple change of
variables.

The next lemma deals with a gradient estimate. We choose a function g, of
a single, non-negative variable supported away from the origin and in Cy(R™).
We extend g, radially to R”, call this extension again g,, i.e. ¢,(£)=¢.(|¢]), and we
can now consider ¢ €Cy(R"). More precisely assume supp g; (&) &S{¢:
(1/8)YA-D<|E] <5010~} and let g, ;(&)=01((a/2/d)/@V|¢), j=1. We can
now state the lemma; in applications we only need the result for d=1.

Lemma (2.15). Let o(x, £)€ST3, and define
Ky, x=y) = [ &C»0ell*0(@)0,, ;9o (x, &) de.
Let |x—xo|=d, then for 1<p=2, 1/p+1/g=1,
f o 1K (o, Xo—3) =K (x, x— Yedy)t = (2= gi=m1p 4 d(2) d)a=D=nip),
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Proof. We break up the integrand into two terms,
([ [Ki o, %= 3)—K, (x, Xo—y)|2 dy) "
+ ([ IKs O o= 0) =K (x, x =)t dy)" = L+ 1, say.

We will estimate [, first. We write the integrand as

lx— xol 3
K; (%95 Xg— )~ K;(x, xo—y) =— 35 _ 1f 3 7 K;(Xo+tu, xo—y) dt,

where u=(u,, ...,u,) is the unit vector (x—x,)/[x—x,|. Thus
|x—xn‘

L=3", ( S qdy}‘/‘l.

By Minkowski’s integral inequality and Hdolder’s inequality with 1/p+1/g=1, we
can further majorize this by

N (A
S0/ e
=dvr 3" l(fl" ""'f )

As the estimates are independent of the coordinates we carry them out for an arbi-
trary k. Put t=x,+7u. Then the integrand of the above expressions is

d
“ka;k' K;(xp+tu, xo—y) dt

4 \a
dy] dt

o, K;(xo+1tu, x,—)

q

1/q
K(xo+tu, Xo—Y) dydt) |x —x,[1/®

1/q
K (X0t tu, w)‘ dw dt] .

= K ) = [, 00616 00) 2 03, O0n ),

and since [¢["/*do/d1,€ S}, Lemma 2.12 applies. We may thus choose f;(¢)=
0y,;(©)|EME-a/P=2)—na/2 and estimate (2.16) by

q a/q 1/q
dw) df]

1313 d0)" = cae| f;) 4% = cd | £},

217 e [f (I)x_%l (f " l% Ko+ tu,

[x—xg!

=cd? 3T (f

With a minor adjustment of the constants involved because of the support of g,
we may employ Lemma 2.14 with 6=n(2—a)(1/p—1/2)—na/2, A=(2d)VE@~D



12 Sagun Chanillo and Alberto Torchinsky

to get that (2.17) is bounded by cd(2/d)@®*"9/=Y A simple computation shows
that (6+n/q)/(@—1)=—n/p. Thus

(2.18) I, = cd'—™P2-inlp,
We now estimate the main term, ie. /,. Now,

|3 =)
K;(x, xo—y)—K;(x, x—=y) = >} _ 1f ’ uka K;(x, xo+tu—y)dt,

where u=(x—x,)/|x—x,] is the unit vector with components (i, ..., #,). Conse-
quently I, is majorized by

e 3" 1( f"‘ l Sl

o ple—s 9
=qur 3" (fi off nl.b.;v.:K_,

[

1a
K(x,xo—i-tu ) dydt]

14
dw dr] .

Note that
o Ky W) = [, €00 G0, D, O &

; , 8
= fR" w9 eilgle Tél_T(—Z—@(_——_a’*llﬁ O'k(x, f)f,(f) d&a

where o, (x, )=&K 'a(x, £) and f;(Q)=ey, ;O] /HE"E-2CP=1D. Now
o (x, §)€S] , and as above we may apply Lemmas (2.12) and (2.14) to get

(/2

oW,

=[n/g~1—-na/2+n2-a)(1/p—1/2))/(a—1) = 1/(a—1)—n/p.

Thus 1, is majorized by cd(2/d)/@-D-*?  Combining this estimate with that for I,
we obtain the desired conclusion.

The next sequence of lemmas deals with asymptotic expansions. Let g, be a
smooth function of the positive real numbers vanishing on [(1/4)Y%~9, ). Let
2:€C° (R also denote the radial extension of the above function, ie. g,(¢)=

02 (I¢]).

Lemma (2.19). Let ¢,($)¢cCy(R™) be as above and put g, ;)=
0a((a/27d)e=VI¢)); j=1 and d=1. For o(x, EESTWE put

Kyx, y) = [ d00el"0(E)a(x, en, ;) d.

Then for |y|~2/d, more precisely 2~ *d<|y|<2/d, 2?d=1, we have for e=¢(a)>0,
IK; (x, p)| = ely[="+e.

a1 ‘
K;(x, dw) =c(2/d)y

with
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Proof. We express K, (x, y) in polar coordinates. Thus for y=|y[y’, é=[¢|¢'=rE’,

Ky = [, [T e b9 (g, (o (x, r&) = dr dg'.

We now integrate by parts the inner integral. Before we proceed we note that
0(r)g., ;(r) is supported in {r: 0=r=<(2'*2d/a)"®~Y}. Since 0<a<1 we have for
[¥]~2id that

(2.20) lar* =+ 1y, &) = ar* ==y = er*~L

Thus integration by parts yields

(2.21) [ e b0 (r)g, ()0 (x, rEY=tdr

: % itra ;g d 2~ Non—
=i [ e st L (a1 4 1, €) 2000, o, rE)ar

This process may be carried out repeatedly depending on the value of a. More-
over in view of the support of g, ;(r) the range of integration extends only to
(2/dja) =D~ c|y|¥“~D, We now observe that each integration by parts yields
an extra factor of #~° in the integrand. For e.g. if we estimate the integrand on the
right in (2.21) we note that

£ @ = 07, )00, 00 05, €]
= a(l~a)r*=*(ar*=1 +1y|(y', £)) 720 (1)es, ; M) o (x, 18 )"
+(ar* "+ |yl (0, £))710 (1), s (D o (x, 1)
Har 10, ) 100)eh P s, Y
Har DI, )00 1) 0 s, rE
+(n—D(ar* 2+ Y|, €)My, ;o (x, 1) = L+ L+ L+ +1;, say.

We now apply (2.20) to I; and use the fact that |o(x, ré)|=cr "% Thus I,
is dominated by

(2‘22) ce(r)ra_2+2(1—a)+n—1—na/2 = c(l-i—r)"‘l"“""“/z.

As for I, we note that 6'(r) is supported in {r: 1/2<r<4}. Thus again by (2.20),
(2.22) holds trivially. For I, we note that |g, ;(r)|=c(2/d)/*~?=cr~'. Again by
(2.20), I, is bounded by c(1+4#)~'"2""/2 For I,, |d/dra(x, r)[=cr "/*"1,
and we again arrive at (2.22). For the last term, I, because |a(x, r&)|=cr "/



14 Sagun Chanillo and Alberto Torchinsky

and (2.20) hold, we get immediately (2.22). Thus the right side of (2.21) may be
bounded by

clylll(a-l) a _ _ _
cfo (1+r) 1-a na/2dr§c|yl n+a(1-n/2)/(1~a)

When n=1, a(l—n/2)/(1-a)=a/2(1—a)=¢e(a)>0. For n=1 we integrate the
right side of (2.21) by parts once more to get

. ® i & d a— ’ -
i f7 et e [(ar =24 Y (7, €7

X 7?7 {(ar* "+ 1y, €))710(Des, ; (N o (x, rE)"=1 ] dr.

The gain in the integrand is now r~ 2. Therefore such repeated integration by
parts gives the requisite decay at infinity and thus the lemma. In fact one may show
that |K;(x,»)|=c, but for our purpose it is enough to prove that [K;(x,y)|=
cly|™"*%, &>0. This is what we have just done.

We shall now need to perform a stationary phase computation. To do so we
reguire the following lemma. Its proof was supplied to us by Ravi Kulkarni.

Lemma (2.23). Let p, ..., p, be real numbers such that Z;_, ui=1. Let A
be the nXn matrix given by

[T o T Y R 1 ey
I YR b Ry Y

o d . o1l Py—1Ma - Py + 17
Then det A=p."".

Proof. We construct the nXn matrix B as follows

1 gy He R S |
O p3+ps pads - aftn—y
B= 0 popy  pi+us... Bafy_y

0 o1ty Ma-1Mz ... Pn-1+po

It is evident that det B=det 4. Now in B we perform the row operations
Ri_l‘ti—lRl’ i:2, 3, veey B,y to get

1 M Ho e Hpey
—ﬂl ”3 0 ...0

det B = det | : 0 pi...0

2

— Uy O 0 . pd
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Expanding by the first row we get
- _ -1
det 4 = det B = p20~ 410~ 377148

But 37_,pi=1, thus det A=p V4221 —p)=pi"=?, as we wanted to
show.

We now need to recall the asymptotic formula for the principle of stationary
phase. The proof of this proposition may be found in Chapter 7, volume II, of
Treves’ book [10]. To state the proposition let us introduce some notation. Points in
R* are denoted by 6. f(6)€C=(R¥) and is real-valued. g(x,o)cC=(R*XR*) and
is compactly supported in the variable 6. Moreover, and in order to satisfy the hypo-
thesis of the principle of stationary phase, we shall assume that ¢, is the unique criti-
cal value of f(s) in the support of g(x, ¢) in the variable . Thatis, Vf(g,)=0, but
det Hy£0, where H, denotes the Hessian of f(s) at 6,. Moreover, we shall assume
that g(x, o) is uniformly bounded along with its partial derivatives in both x and &
variables.

0 0
With the usual notation D,=1/i (—, vens ——) we have
dao, oo,

Proposition (2.24). For t—~oo, and for any M=0,

kj2
f - g (x, 6)do = (_2t_1c) |det Hy| =2 exp {i [tf (00) +-7—;— sgn Ho]}

i12y )
X 2o (%] (HG Do DoY g (x, 6t~/ +0 (™M1,

The O bound is uniform and does not depend on x, because by assumption g(x, o)
and all its derivatives in both x and ¢ variables are in L= (R*XRF). For the next lemma
we need one more new notation. Let g be a cut-off function on the positive real line.
More precisely, g; is a C function which vanishes for 0=t<(1/2)¥“? and
equals 1 for 7=>3Y1~9, Extend g, radially to R”, and for j=1 put g, (&)=
0s((@/2d)"“=DJe]). Then supp os,;S {¢: |E[=(2~d/a)¥V} and g, ,;=1 for
[€]>3Y@~D (2id/g)H =D,

Lemma (2.25). Let o(x, £)€STY"® and define
Ki(x,y) = fR" 0. 9+KkI90(£)gs, ;(§) o (x, & dL.

Then for |y|~2'd, more precisely for 2'"'d<|y|<2/d=1, |K;(x,y)|=c.
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Proof. We first express the integral defining K;(x, y) in polar coordinates to
get, for y’€S*,

(226) I(j(x’ y) — f;z eir® Qs,j(r)r—na/2+n—1
X [, @O0 0 (x, 78) AL dr.

Our aim now is to apply the stationary phase principle to the inner integral. Thus
our goal is to convert the inner integral into a form where Proposition (2.24) applies.
Put y'=(uy, ..., )y Dy #i=1. Since those y’€S""' with one of the u/s=0,
1=j=n, form a set of measure zero and can thus be disregarded, we only consider
those y’s such that p;>0 for all j, 1=j=n. We will first show that there exist an
integer M and C* functions ¢, &,, I=m=M such that

2.27) fsn—l eIyt (x, 1) d&

= ce™ ()= OV Y ()T Om (X, 7, pis s )

Fee |y =02 I Gy (s T s s ) FO((rly )M D),
Moreover, for 1=m=M and ;j=0,1,2,...

i

_aTj'gom(xv P fys -ees ﬂn)

= cr,

(2.28)

J
%Cm(x, Py Pyseees Up)| =P,
and the O constant may be taken uniformly independent of x,r and u,, ..., 4,.
We choose a finite and smooth partition of unity as follows. First construct a
band around the equator of $*~* and cover this band by a finite number of surface
balls. Together with the semi-hemispheres of " ™\ band containing the North and
South poles of §"~?, we obtain N regions which we call 3, 1=k=N. The illus-
tration on the next page will clarify this situation. Let now {{,}i~, be a smooth
partition of unity on the surface of $" ! such that supp ¥, & 5.
The choice of 3, is made in a manner so that the projection of 2, onto one
of the coordinate hyperplanes ¢,=0, i=1, ..., n, is non-singular, i.e. the Jacobian of
the projection of > onto one of the hyperplanes ¢;=0 is non-zero there. Now

‘/'S"_l e O ()2 (x, rE) dE’

= 3N €O (Y (3, 1) dE = S Ay, say.
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Figure 1

From now on we set r|y|=t. Since [y]~2'd and r=>c(2/d)"“~P, we note that
t>c(2'd)“~ V=1 since 2’d=1. Thus as j—-oo, <. Let us consider one term in
the right side above. Assume that we are considering the region I, and that i, is the
function corresponding to this region. Clearly we may project region / onto ¢,=0
and the projection is non-singular. Thus we have

4, = Gt (Z7z o rn,Vim 2?'1"1)1//1(0'1,. s Oy 1,]/1 nl 2]

Rn-1 J
X@(X, T, 61y ...y Op_y) doy...do,_q, with

Ox, 7,6y, ..., Opq) = 0(@)r"Pc (x, 610y, ... ]/1 2 : 2] J(015 vy Op=1)s
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where J is the Jacobian of the projection. We notice that in the projection of the sup-

port of ¥, onto ¢,=0, we have >7_ yo3=c=<l1. Thus, if we define

(pl(x9 ¥, 0y, ...,O'"_l)=|//1[0'1,. Op-1 V]- _, =1 1](p(x ¥, 0q5 .. -aan—1)9
then it follows that ¢, (x, 7, 64, ..., 6,_,) is compactly supported and C* in oy, ...

..ss On—1, and bounded in x and r. Thus A4; equals
(2.29)

it n:l et 1— n:l 2
fzv.l-]]:azsl:<1 e (Zj—lo-"ﬂ', ”"V 2-"1 aj) (pl(x, T, 61, eeey 0'”_1) dcl...dd,,_l.
i= =

J

We may now apply Proposition (2.24). To do so we compute the critical point o,
of J 1 o; i+ 1, |/ 1— 2"‘ T f, and arrive at the system of equations

= o JY1- 3" a%, i=1,2 .., n—1L
Assuming that p,>0 (the case u,,<0 can be treated in an entirely analogous man-
ner) and since 7_, pj=1, the solution of the above system is o;=p;. Thus
6o=(U1s ...s Yy—1)- Now the Hessian H, of Z;;;ajﬂj'l'ﬂn 1->""16%at g, is

J].’

7 T Y TPy Ty TRy
) ﬂlllz [T -y Ty T
n

ﬂ1ﬂn—1 Halln—y - U1 Hi
So by Lemma (2.23), det Hy=(—1)""1pX*=2/20-D=(—-1)""1u % We now see by
virtue of Proposition (2.24) that
= /)"~ |y,] exp {itn/4}

- ("2) " (12D, Dy g (x, 7, a1+ O H1=0=DP)

X 2=
We let

1l 2 2D, D,y 15, 1, 00) = s 1y s s )

Since 0(r)r"*?c(x, ré’)E S? 0, we can establish (2.28) by a direct computation.
Recalling that 7=r|y], we see at once that

Ay = ce™A(r|y)@=0 ¥ |y @ (x, Ty s ey ) FO((rly) M D),

We repeat this process for each of the functions y, in the partition arriving in each
case at integrals as in (2.29). Moreover in each case, depending on which hyperplane
we project, the phase function will be

n n Py
2=, e Ol T M Vl =2 o1,k
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The negative sign arises if we consider a region such as II in the picture, where o¢,=
-y 1->""10¢% and thus

ji=1"Jj
(0, 0) = Ziioum—p) 1~ 35 6%,

for o€Il. Integrals arising from such a region give rise to the second term on the
right in (2.27). We have thus proved (2.27).

Now choose M so that n—1—na<2M. With this choice of M we substitute
the right side of (2.27) for the inner integral of (2.26) to get

IK;(x, p)| = C(I yl—(n—n/zl f1/2 eire+riv g, (r)p—me/t+ a2

X o O™ @, 7, iy, ey 1) dr)

+C(lyl_("_1)/2 If:; ei(r“-—r[y[)g:s’j(r) r—-—na/2+(n—-1)/2 2r=0 (rlyl)_mCm (xs 7', ”la ey ﬂn) d?’l)

+CIyl‘M“‘”+1”2f

i/2

o.M 0=V g = |11 +I1,  say.

Recalling that supp g, ;C{r: r>c|y|Y“=P} we see that the term |I;] above is at
most

CIJ’I_M (n+1)/2 r—na/2—M+(n—1)/2—1 dr = cly[(M+1/2)a/(1—-a)—n_

Mll(a-ﬂ

Thus if n<(M+1/2)a/(1—a), a choice which is compatible with the earlier determi-
nation of M, then because |y|=1 the term |I;| is uniformly bounded.

We handle I; and I, by repeated integration by parts. The technique for both
terms is the same and thus for brevity we only consider I;. We first note that the
derivative of the phase function in 1, for r in the support of g, ;(r) satisfies the esti-
mate

(2.30) !ar“‘l-}-lyll = |yl —ar* ! = ¢|y|.

Thus performing an integration by parts in I; we get
(2.31) Iy = cly|= =072 f e'<"'+'lyl> ~lar =ty

X g, ; ()2 OV yy M (x, T, g, ..., p)] P

The process above is a typical step and we may carry it out repeatedly. At each step
the integrand decays by a factor of (#]y])~* over the previous step. Let us show this
for the first step. We now make use of the estimates (2.28) and (2.30) to estimate
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the integrand above. Now

0
o [(@r* =2+ |y ~1gs ; () r—"el2+O=Di2(r|yy=" ¢, (X, 7, i1, ..., M)
= a(l—a)r*=2(ar*=2+|y) 205 ; (D r=" 2+ =R (| Yy @, (x, T, fias -e s Ha)
+3,; (N (@ro =14 [y) B O-DR G Y )0, (X, 7 fryy ey fa)

+ar* " +iyD e, ,-(r)-g;(r"“"2+ NA (57) M C A A T T )|

= Ji+Jo+J3, say.

Consider J, first. Now for résupp es,;(r), we have (2.30), thus r*~*(ar*  +|y|) %=
c(r* Uy Y |y)"*=c(r|y)~*. The other factors appearing in the integrand of J,
coincide with the original factors in the integrand of I,. Thus we have verified our
claim in this case.

For J, we simply note that [¢; ;(r)|=cr~" and thus again because of (2.30)
our claim is verified. In view of (2.28) the claim follows for J,, too. Thus performing
M —m+1 integration by parts for the m™ summand in (2.31), we get that I; reduces
to the case I,, or in other words,

AR c!yl—(n-—l)/z 25:0.[;;/(@_;) (r!yl)‘“*"‘*l r-—na[2+(n—1)/2(r!y!)—m dr

oo

= c|y|~ M- G+1/2 p=nal2=MH+—-1/2~1 dp = c|y|(M+1/2e/0=a)~n

Iylll(a-l)

But because {y|=1 the choice of M yields that |L|=1.

To handle I, we note that the derivative of the phase function is ar*~'—|y|,
and for resupp ¢,;(r) we again have |ar"‘1— | y[[zc| y| and we proceed again as
we did for 7;. This completes our proof.

3. The basic estimate

We are now ready to prove Theorem (1.2) of the introduction. Before beginning
the proof we note that if needed we may assume that o{x, £) is supported in £}=1/2,
in the £-variable. The reason being that we may write

elii*a (x, &) = 0(D) el o (x, O +(1-0()eWi"a (x, &),

where 0(£)cCg (R™) is a cut-off radial function, which equals 1 at infinity and
vanishes near the origin. Then a direct computation yields that (1—8(&))e"*a(x, &)
has a kernel which satisfies an L?-Hdrmander condition, for 1<g<os. This in turn
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yields, see for instance Kurtz and Wheeden [7], that the operator induced by the sym-
bol (1—0(&))e™a(x, &) indeed satisfies the sharp function estimate of Theorem
(1.2). Thus the main point is to prove the estimate for the {.d.o. induced by
00 a (x, 8).

Proof of Theorem (1.2). Fix a point x, and a cube Q centered at x,,. The proof of
the basic estimate breaks up into the analysis of two cases according to the size of Q.
We let diameter Q=d and consider the trivial case first.

Case 1. Suppose d=1/4. Let 30 denote the cube concentric with Q but with

diameter 3d and let f;(x)=f(x)x30(x), fo(x)=f(x)—fi(x). Thus supp f; lies outside
30. Now

= [ VIf@ldx=d=" [ [TAG)| dx+d" S, 170l dx.
For the first term on the right above we have
d-" jQ |Tf, (%)) dx = (d-" fRn ITA@Pdx)"?, 1=p<e.
But by Lemma (2.5), for any p, 1<p<oo,
d [ TR = (4 [ 1AGP dx)'? = M, f(x).

Now, there is a constant ¢, (depending only on the dimension n) so that supp f,S
{y: |xo—y|>c,d} and consequently for x€Q, f,(x—y) vanishes unless |x—y|=
¢,d, where ¢, is another (dimensional) constant. Consequently

) = [ k(x, x—) f(y) dy
x—y|>cyd
and since d=1/4 by Lemma (2.3), for x€¢Q we have
TR = [ 0 FOWx—yP"dy = cM, f(x0).
Thus in this case . d™" [o |Tf(x)ldx=cM,f(x,), as we wanted to show.

Case 2. The case when d=1/4. Let yx,(x) denote the characteristic function of
the set {x: |x—xo|<2d}, xs(x) that of the set {x: 2d=|x—x,|<d' ™%}, x(x)
that of the set {x: d'~9=|x—x,[<1/2} and y,(x) that of the set {x: [x—x,|=1/2}.
Put f;(x)=f(x)x,(x), 1=j=4. Thus F)=A)F(0)+f3(x)+fo(x). We first
consider f;(x) and f,(x).

Now, by Lemma (2.5) for any p, 1<p<es,

a= [ 1@ dx = (@ [ 1TAG)P dx)?

= c(d [, AP dx)T = M, [,
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which ends the estimate for f;(x). Now for x€Q, by Lemma (2.3)
e =cf . ONx—ydy

—y|>1/2
_yl2rdy =
scf WSO lx—yP"dy =cM,f(x)
As this is a uniform estimate for x€Q, we see that
d_"fQITﬂ(x)] dx = cM, f(xy).

We are thus left with estimating Tf,(x) and Tf;(x). We begin by estimating
Tf.(x). We break up f,(x) by setting fo(x)=_232, f;(x), where f;(x)=fa(x)x{x:
2-ld<|x—xy|<2/d} with 2/ed~d'~° Now,

Thx) =30, [ k(x x=2) () dy.

We will now break up k(x, x—y) into three pieces, with a decomposition depending
upon j. To do so we need to construct a partition of unity for R”. Let #,(&), n,(5)
be radial and in Cy (R") with the property that

1 (V-9 < [¢] < 40Y0-

m& = {0 K, - (1/8)1-’(1_“) or | > 501[(1—0)’
and
1 ¢ < (1/5)1/(1"“)

772(6) = {0 ]f] - (1/4)1/(1—a).
Now define (&) radial, C5° (R"), be such that
1 [g] <3009
b ©={, ¢ = 409,

We let 0:1(5)=y (O &)/ (m(O)+n:(8) and ¢.(O)=v (E)na(E) (1. (&) +12(5)).
Because of this construction ¢, and g, are essentially the cut-off functions in the
statements of Lemmas (2.15) and (2.19), respectively. Also, if we set g, ;(§)=
I—(g1,;(&)+ s, ;(5)), the o, ;(£)’s basically satisfy the conditions imposed on the
cut-off function in Lemma (2.25). Thus, for each j, the new functions g, ;(£), 0, ;(£)
and g3 ;(¢) form a partition of unity for R” and we have

ThH() = Z1, [ [, 071490 @0 (x, O(0y, O+ s, (O + 05, ;)3 (D) dé]
=30 [ (K x= ) +K;,0(% x =) +K;,5(x, x—2)) £5) d,
say. By Lemmas (2.19) and (2.25), for x€Q,
1Zh@ = S, f 50N x=yP=2dy+ S, | o Kis 2= 7, dy|-

Jx—y|~27d
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Since |xo—y|~[x—y| for x€¢Q and d=1, it follows that
TG = e 35 [ g HiOWxo=3I = dy
K0 x— y)f,(y)dy|<cM fe)+ I [ Kis (s x =) [0) dy|.

R
Thus

G.1)
= [ \Th@dx = M, [+ 37, d7" | [ Kis(e x=2)f,0) dy| d.

We need further to estimate the second term above. By Holder’s inequality this
term does not exceed

= 250,07 [ | [ o KiaCr x=2) ;) dy|'dx).
Now letting d=n(2—a)(1/p—1/2) we get
Lo Kis(s, 5= 1) dy

= fRn eillx, O+121® 0(5—);2,(;& |§["a12 Ql’j(g)m—nalzw fj(g) dé.

Since o (x, §)[£]"/%€ 8] 5, and we may thus use Lemma (2.6), we get, for 1/p+1/g=1,
(le R® K.f,s(x’ x—y)f_;(y) dy!qu)llq

= cl|(lE2 %2 0y, 0817, ©) |lp = I Filys say.

We now apply Lemma (2.13) and since g,,;(6)=0,((a/2'd)¥“~V[¢]), we have, for
l<p<o, that
[ F;l, = eI dy@-radie=D| £l

= c(21 d)(a—nalz)/(a-1)+n/p M,, f(xo)-
Thus for such p’s,

A= cd™" M, f(x) 2;«; \ (2/ d)@—rarDia=1)+n/p,
Now. (6 —na/2)/(a—1)+n/p=n/q(1 —a). Because 2/od~d'~* it readily follows that
A = cd™"M, f (xg) S0, 1Ay = oM, f(xy).
In view of (3.1) we easily have
d-" fQ \Tf(x)| dx = cM, f(xo).

We now consider Tf;(x). We again write fy(x)=23L; f;(x), fx)=f)x{x:
2V d<|x—x,|<2/d} and 2d~d~¢, 2hd~1. Defining o,,;, 0s,; and g,,;
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exactly as we did while considering f;(x), we get,

Tfs (0= I, [ o0 KO X =0 +K; 25, = 9) + K55, X~ 2)) /() dy.

We also let
o= 21, [ KisCios %= ) [;() dy.

Thus
1T ~col = ST, ([ NKinCe x= DO v+ [ 1K o5 x= W[ dy)
+ 255 S o osa Ko X D) =K, G, 0= 1, 0)] dy = B+C+D,  say.

Using Lemmas (2.19) and (2.25), we see that for x€Q,

B+C=c I, [I0Nx—yr—dy s ¢ 3, [1,0)/x—yI"=*dy = M, f(x,).

=JpJ

We now estimate D. We have, again for 1/g+1/p=1; that D is dominated by
Fotnl o ymra K8 £ =) = K (e, Zo= 1 dy) " ([ 15,000 dy)'™.
Using Lemma (2.15) for the first term on the right above we see that
D=¢ 2;; " (2—jn/p dY=mP 4 d (24 dyte—D=nlP)(2] gyl M, f(xo)
= M, flx) (d S, 1 del0=0 T | 9-iie-0)

=j0
Since 2/td~1, 2fed~d' % we see that the expression above is at most
cdM, f (xp)(—dlog(d*»)+1).

But d=1/4, thus D=cM, f(x;) as well. Combining these estimates we have the
uniform bound

ini\i(x) —'CQI = éMpf(xO)’
thus arriving at

af o T () —col dx = cM, £ (x0).
This finishes our proof.
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cerning this paper.

References

1. CaannmLro, S., Weighted norm inequalities for strongly singular convolution operators, Trarns.
Amer. Math. Soc., 281 (1984), 77—107.

2, CHANILLO, S., KurTZ, D. S. and SampsoN, G., Weighted weak (1,1) and LP-estimates for
oscitlating kernels, preprint,



10.

11.

Sharp function and weighted L? estimates for a class of pseudo-differential operators 25

. CorrMAN, R. R. and MEYER, Y., Au-deld des opérateurs pseudo-differentiels, Astérisque 57

(1978).

. FerrerMAN, C., L? bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413—417.
. FerrerMAN, C. and StEIN, E. M., HP spaces of several variables, Acta Math. 129 (1972),

137—193.

. HORMANDER, L., Pseudo-differential operators and hypoelliptic equations, Proc. Symp. in

Pure Math., 10 (1967), 138—183.

. Kurtz, D. S. and WHEEDEN, R. L., Results on weighted norm inequalities for multipliers. Trans.

Amer. Math. Soc., 255 (1979), 343—362.

. MiLLER, N., Weighted Sobolev spaces and pseudo-differential operators with smooth symbols,

Trans. Amer. Math. Soc., 269 (1982), 91—109.

. SteIN, E. M., Singular integrals and differentiability properties of functions, Princeton Univ.

Press, Princeton, 1970.

TREVES, F., Introduction to pseudo-differential and Fourier integral operators,2 vols., New York—
London, Plenum Press, 1980.

WAINGER, S., Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc., 59 (1965).

Received September 13, 1984 School of Mathematics

Institute for Advanced Study
Princeton, NJ 08540, U.S.A.

Department of Mathematics
Indiana University
Bloomington, IN 47405, U.S.A.



