# Sources of log canonical centers 

János Kollár


#### Abstract

. Given a $\log$ canonical pair $(X, \Delta)$ and a $\log$ canonical center $Z \subset$ $X$, we define a Calabi-Yau fiber space $\left(S, \Delta_{S}\right) \rightarrow Z$, called the source of $Z$. We believe that the source carries - and makes accessible - all the relevant information about the $\log$ canonical center $Z$. There is a natural Poincaré residue map from $X$ to $S$ which is used to solve several problems in higher-codimension adjunction. The main application is to the construction of semi-log-canonical pairs.


## §1. Introduction

Let $X$ be a smooth variety and $S \subset X$ a smooth hypersurface. The Poincaré residue map is an isomorphism

$$
\mathcal{R}:\left.\omega_{X}(S)\right|_{S} \cong \omega_{S}
$$

In additive form it gives the adjunction formula $\left.\left(K_{X}+S\right)\right|_{S} \sim K_{S}$, but this variant does not show that $\mathcal{R}$ is a canonical isomorphism.

Its generalization to $\log$ canonical pairs $(X, S+\Delta)$ has been an important tool in birational geometry; see, for instance, [Kol92, KM98]. One defines a twisted version of the restriction of $\Delta$ to $S$, called the different and, for $m>0$ sufficiently divisible, one gets a Poincaré residue map

$$
\mathcal{R}^{m}:\left.\left(\omega_{X}^{[m]}(m S+m \Delta)\right)\right|_{S} \cong \omega_{S}^{[m]}\left(m \operatorname{Diff}_{S} \Delta\right)
$$

where the exponent $[m$ ] denotes the double dual of the $m$ th tensor power. As before, it is frequently written as a $\mathbb{Q}$-linear equivalence of divisors

$$
\left.\left(K_{X}+S+\Delta\right)\right|_{S} \sim_{\mathbb{Q}} K_{S}+\operatorname{Diff}_{S} \Delta
$$

There have been several attempts to extend these formulas to the case when $S$ is replaced by a higher codimension log canonical center of a pair $(X, \Delta)$ [Kaw97, Kaw98, Kol07]. None of these have been completely
successful; the main difficulty is understanding what kind of object the different should be.

Let $Z \subset X$ be a $\log$ canonical center of a pair $(X, \Delta)$. We can choose a resolution $f: X^{\prime} \rightarrow X$ such that if we write $f^{*}\left(K_{X}+\Delta\right) \sim_{\mathbb{Q}} K_{X^{\prime}}+\Delta^{\prime}$ then there is a divisor $S \subset X^{\prime}$ that dominates $Z$ and appears in $\Delta^{\prime}$ with coefficient 1. The usual adjunction formula now gives

$$
\left.\left(K_{X^{\prime}}+\Delta^{\prime}\right)\right|_{S} \sim_{\mathbb{Q}} K_{S}+\operatorname{Diff}_{S}\left(\Delta^{\prime}-S\right)=: K_{S}+\Delta_{S}
$$

Note further that $K_{X^{\prime}}+\Delta^{\prime}$ is trivial on the fibers of $f$, hence so is $K_{S}+\Delta_{S}$. Thus

$$
\left.f\right|_{S}:\left(S, \Delta_{S}\right) \rightarrow Z
$$

is a fiber space whose (possibly disconnected) fibers have (numerically) trivial (log) canonical class. The aim of previous attempts was to generalize Kodaira's canonical bundle formula for elliptic surfaces (cf. [BPV84, Sec.V.12]) to this setting. The difficulty is to make sure that we do not lose information in the summand that corresponds to the $j$-invariant of the fibers in the classical case. (For families of elliptic curves this could be achieved by keeping the corresponding variation of Hodge structures as part of our data.)

This suggests that it could be better to view the pair $\left(S, \Delta_{S}\right)$ as the answer to the problem. However, in general there are many divisors $S_{j} \subset X^{\prime}$ that satisfy our requirements and they do not seem to be related to each other in any nice way.

Our aim is to remedy this problem, essentially by looking at the smallest possible intersections of the various divisors $S_{j}$ on a dlt model of $(X, \Delta)$. There can be many of these models and intersections, but they turn out to be birational to each other and have several unexpectedly nice properties. These are summarized in the next theorem. For the rest of this note we work over a field of characteristic 0 .

Dlt models, the different and crepant birational equivalence are recalled in Definitions 4-6.

Theorem 1. Let $(X, \Delta)$ be an lc pair, $Z \subset X$ an lc center and $n: Z^{n} \rightarrow Z$ its normalization. Let $f:\left(X^{m}, \Delta^{m}\right) \rightarrow(X, \Delta)$ be a dlt model and $S \subset X^{m}$ a minimal (with respect to inclusion) lc center of $\left(X^{m}, \Delta^{m}\right)$ that dominates $Z$. Set $\Delta_{S}:=\operatorname{Diff}_{S}^{*} \Delta^{m}$ and $f_{S}:=\left.f\right|_{S}$. Let $f_{S}^{n}: S \rightarrow \tilde{Z}_{S} \rightarrow Z^{n}$ denote the Stein factorization.
(1) (Uniqueness of sources) The crepant birational equivalence class of $\left(S, \Delta_{S}\right)$ does not depend on the choice of $X^{m}$ and $S$. It is called the source of $Z$ and denoted by $\operatorname{Src}(Z, X, \Delta)$.
(2) (Uniqueness of springs) The isomorphism class of $\tilde{Z}_{S}$ does not depend on the choice of $X^{m}$ and $S$. It is called the spring of $Z$ and denoted by $\operatorname{Spr}(Z, X, \Delta)$.
(3) (Crepant log structure) $\left(S, \Delta_{S}\right)$ is dlt, $K_{S}+\Delta_{S} \sim_{\mathbb{Q}} f_{S}^{*}\left(K_{X}+\Delta\right)$ and $\left(S, \Delta_{S}\right)$ is klt on the generic fiber of $f_{S}$.
(4) (Poincaré residue map) For $m>0$ sufficiently divisible, there are well defined isomorphisms

$$
\begin{aligned}
\left.f^{*}\left(\omega_{X}^{[m]}(m \Delta)\right)\right|_{S} & \cong \omega_{S}^{[m]}\left(m \Delta_{S}\right) \quad \text { and } \\
n^{*}\left(\left.\omega_{X}^{[m]}(m \Delta)\right|_{Z}\right) & \cong\left(\left(f_{S}^{n}\right)_{*} \omega_{S}^{[m]}\left(m \Delta_{S}\right)\right)^{\mathrm{inv}}
\end{aligned}
$$

where the exponent inv denotes the invariants under the action of the group of crepant birational self-maps $\operatorname{Bir}_{Z}^{c}\left(S, \Delta_{S}\right)$.
(5) (Galois property) The extension $\tilde{Z}_{S} \rightarrow Z$ is Galois and the natural map $\operatorname{Bir}_{Z}\left(S, \Delta_{S}\right) \rightarrow \operatorname{Gal}\left(\tilde{Z}_{S} / Z\right)$ is surjective.
(6) (Adjunction) Assume $\Delta=D+\Delta_{1}$. Let $n_{D}: D^{n} \rightarrow D$ be the normalization and $Z_{D} \subset D^{n}$ an lc center of $\left(D^{n}, \operatorname{Diff}_{D^{n}} \Delta_{1}\right)$ such that $n_{D}\left(Z_{D}\right)=Z$. Then there is a commutative diagram

$$
\begin{array}{ccc}
\operatorname{Src}\left(Z_{D}, D^{n}, \operatorname{Diff}_{D^{n}} \Delta_{1}\right) & \stackrel{c b i r}{\sim} & \operatorname{Src}\left(Z, X, D+\Delta_{1}\right) \\
\downarrow & \stackrel{n_{D}}{\rightarrow} & \downarrow \\
Z_{D} & Z .
\end{array}
$$

Crepant log structures are defined in Section 2. Theorem 10 shows that minimal lc centers are birational to each other; this proves (1.1) and it also establishes (1.6). Its consequences for the Poincaré residue map are derived in Section 3. Sources and springs are formally defined in Section 4 and (1.5) is proved in Proposition 19.

Section 5 contains the main application, Theorems 23-24. We show that normalization gives a one-to-one correspondence:

$$
\left\{\begin{array}{c}
\text { slc pairs }(X, \Delta) \\
\text { such that } \\
K_{X}+\Delta \text { is ample }
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { lc pairs }(\bar{X}, \bar{D}+\bar{\Delta}) \text { such that } \\
K_{\bar{X}}+\bar{D}+\bar{\Delta} \text { is ample plus an } \\
\text { involution } \tau \text { of }\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)
\end{array}\right\} .
$$

The papers [Oda13, OX12] contain further applications to $K$-stability and to slc models of deminormal schemes.

Shokurov informed me that his forthcoming paper [Sho13] contains another approach to Theorem 1.

## §2. Crepant log structures

Definition 2. Let $Z$ be a normal variety. A crepant log structure on $Z$ is a proper, surjective morphism $f:(X, \Delta) \rightarrow Z$ such that
(1) $f$ has connected fibers,
(2) $(X, \Delta)$ is lc and
(3) $K_{X}+\Delta \sim_{f, \mathbb{Q}} 0$.

A proper morphism $f:(X, \Delta) \rightarrow Z$ is called a weak crepant log structure on $Z$ if it satisfies (1) and (3) but $\Delta$ is allowed to be a noneffective sub-boundary.

Any lc pair $\left(Z, \Delta_{Z}\right)$ has a trivial crepant log structure where $(X, \Delta)=$ $\left(Z, \Delta_{Z}\right)$. Conversely, if $f$ is birational then $\left(Z, \Delta_{Z}:=f_{*} \Delta\right)$ is lc.

An irreducible subvariety $W \subset Z$ is a $\log$ canonical center or $l c$ center of a weak crepant $\log$ structure $f:(X, \Delta) \rightarrow Z$ iff it is the image of an lc center $W_{X} \subset X$ of $(X, \Delta)$. A weak crepant log structure has only finitely many lc centers.

Let $\left(Z, \Delta_{Z}\right)$ be an lc pair and $f: X \rightarrow Z$ a proper, birational morphism. Write $K_{X}+\Delta_{X} \sim_{\mathbb{Q}} f^{*}\left(K_{Z}+\Delta_{Z}\right)$. Then $f:\left(X, \Delta_{X}\right) \rightarrow Z$ is a weak crepant log structure. The lc centers of $f:\left(X, \Delta_{X}\right) \rightarrow Z$ are the same as the lc centers of $\left(Z, \Delta_{Z}\right)$.

By Proposition 5 we can choose $f$ such that $f:\left(X, \Delta_{X}\right) \rightarrow\left(Z, \Delta_{Z}\right)$ is a crepant $\log$ structure, $X$ is $\mathbb{Q}$-factorial and $\left(X, \Delta_{X}\right)$ is dlt.

Let $f:\left(X, \Delta_{X}\right) \rightarrow Z$ be a dlt crepant $\log$ structure and $Y \subset X$ an lc center. Consider the Stein factorization

$$
\left.f\right|_{Y}: Y \xrightarrow{f_{Y}} Z_{Y} \xrightarrow{\pi} Z
$$

and set $\Delta_{Y}:=\operatorname{Diff}_{Y}^{*} \Delta_{X}$. Then $\left(Y, \Delta_{Y}\right)$ is dlt and $f_{Y}:\left(Y, \Delta_{Y}\right) \rightarrow Z_{Y}$ is a crepant log structure.

Definition 3 (Divisorial log terminal). A pair $\left(X, \sum a_{i} D_{i}\right)$ is called simple normal crossing (abbreviated as snc) if $X$ is smooth and for every $p \in X$ one can choose an open neighborhood $p \in U$ and local coordinates $x_{i}$ such that for every $i$ there is an index $a(i)$ such that $D_{i} \cap U=\left(x_{a(i)}=0\right)$.

As key examples, I emphasize that the pair $\left(\mathbb{A}_{k}^{2},\left(x^{2}=y^{2}+y^{3}\right)\right)$ is not snc and $\left(\mathbb{A}_{k}^{2},\left(x^{2}+y^{2}=0\right)\right)$ is snc iff $\sqrt{-1} \in k$. Thus being snc is a Zariski local (but not étale local) property.

Given any pair $(X, \Delta)$, there is a largest open subset $X^{\text {snc }} \subset X$ such that $\left(X^{s n c},\left.\Delta\right|_{X^{s n c}}\right)$ is snc.

A pair $(X, \Delta)$ is called divisorial log terminal (abbreviated as dlt) if the discrepancy $a(E, X, \Delta)$ is $>-1$ for every divisor whose center is contained in $X \backslash X^{\text {snc }}$.

Definition 4 (Different). Let $(X, \Delta)$ be a dlt pair and $Y \subset X$ an lc center. Generalizing the usual notion of the different [Kol92, Sec.16], there is a naturally defined $\mathbb{Q}$-divisor Diff ${ }_{Y}^{*} \Delta$, called the different of $\Delta$
on $Y$ such that

$$
\left.\left(K_{X}+\Delta\right)\right|_{Y} \sim_{\mathbb{Q}} K_{Y}+\operatorname{Diff}_{Y}^{*} \Delta .
$$

The traditional different [Kol92, Sec.16] is defined such that if $Y=D$ is a divisor then

$$
\left.\left(K_{X}+D+\Delta\right)\right|_{D} \sim_{\mathbb{Q}} K_{D}+\operatorname{Diff}_{D} \Delta .
$$

Thus, in this case, $\operatorname{Diff}_{D}^{*}(D+\Delta)=\operatorname{Diff}_{D} \Delta$. This inductively defines Diff $Y^{*} \Delta$ whenever $Y$ is an irreducible component of a complete intersection of divisors in $\lfloor\Delta\rfloor$. In the dlt case, this takes care of every lc center by [Fuj07, Sec.3.9]; see also [Kol13, Sec.4.1] for details.

The following result was proved by Hacon (and published in [KK10]). A simplified proof is in [Fuj11].

Proposition 5. Let $\left(Z, \Delta_{Z}\right)$ be an lc pair. Then it has a $\mathbb{Q}$-factorial, crepant, dlt model $p:\left(X, \Delta_{X}\right) \rightarrow\left(Z, \Delta_{Z}\right)$. That is, $X$ is $\mathbb{Q}$-factorial, $\left(X, \Delta_{X}\right)$ is dlt, $K_{X}+\Delta_{X}$ is p-nef and $\Delta_{X}=E+p_{*}^{-1} \Delta_{Z}$ where $E$ contains all p-exceptional divisors with multiplicity 1. Q.E.D.

6 (Birational weak crepant $\log$ structures).
Let $f:(X, \Delta) \rightarrow Z$ be a weak crepant $\log$ structure. If $f$ factors as $X \xrightarrow{g} X^{\prime} \xrightarrow{f^{\prime}} Z$ where $g$ is birational, then $f^{\prime}:\left(X^{\prime}, \Delta^{\prime}:=g_{*} \Delta\right) \rightarrow Z$ also a weak crepant $\log$ structure. We say that $f:(X, \Delta) \rightarrow Z$ birationally dominates $f^{\prime}:\left(X^{\prime}, \Delta^{\prime}\right) \rightarrow Z$.

Conversely, assume that $f^{\prime}:\left(X^{\prime}, \Delta^{\prime}\right) \rightarrow Z$ is a weak crepant $\log$ structure and $g: X \rightarrow X^{\prime}$ is a proper birational morphism. Write $K_{X}+\Delta \sim_{\mathbb{Q}} g^{*}\left(K_{X^{\prime}}+\Delta^{\prime}\right)$. Then $f:=f^{\prime} \circ g:(X, \Delta) \rightarrow Z$ is also a weak crepant log structure.

By Proposition 5 every (weak) crepant $\log$ structure $f:(X, \Delta) \rightarrow Z$ is dominated by another (weak) crepant log structure $f^{*}:\left(X^{*}, \Delta^{*}\right) \rightarrow Z$ such that $\left(X^{*}, \Delta^{*}\right)$ is dlt and $\mathbb{Q}$-factorial. If $\Delta$ is effective then we can choose $\Delta^{*}$ to be effective.

Two weak crepant log structures $f_{i}:\left(X_{i}, \Delta_{i}\right) \rightarrow Z$ are called crepant birational if there is a third weak crepant $\log$ structure $h:\left(Y, \Delta_{Y}\right) \rightarrow Z$ which birationally dominates both of them. Crepant birational equivalence is denoted by $\stackrel{c b i r}{\sim}$.

The group of crepant birational self-maps of a weak crepant log structure $f:(X, \Delta) \rightarrow Z$ is denoted by $\operatorname{Bir}_{Z}^{c}(X, \Delta)$. By also allowing $k$-automorphisms, we get the larger group $\operatorname{Bir}_{k}^{c}(X, \Delta)$.

Let $f:(X, \Delta) \rightarrow Z$ be a weak crepant $\log$ structure and $f^{\prime}: X^{\prime} \rightarrow Z$ a proper morphism. Assume that there is a birational map $\phi: X \rightarrow X^{\prime}$ such that $f^{\prime} \circ \phi=f$. By the above, there is a unique $\mathbb{Q}$-divisor $\Delta^{\prime}$ such
that $f^{\prime}:\left(X^{\prime}, \Delta^{\prime}\right) \rightarrow Z$ is a weak crepant $\log$ structure that is birational to $f:(X, \Delta) \rightarrow Z$. If $\phi^{-1}$ has no exceptional divisors, then $\Delta^{\prime}=\phi_{*} \Delta$ and hence $\Delta^{\prime}$ is effective if $\Delta$ is.

Let $f_{i}:\left(X_{i}, \Delta_{i}\right) \rightarrow S$ be weak crepant $\log$ structures and $\phi: X_{1} \rightarrow$ $X_{2}$ a birational map. Let $Z_{1} \subset X_{1}$ an lc center such that, at the generic point of $Z_{1}$, the pair $\left(X_{1}, \Delta_{1}\right)$ is dlt and $\phi$ is a local isomorphism. Then $Z_{2}:=\phi_{*} Z_{1}$ is also an lc center and $\left.\phi\right|_{Z_{1}}:\left(Z_{1}\right.$, Diff $\left._{Z_{1}}^{*} \Delta_{1}\right) \rightarrow\left(Z_{2}\right.$, Diff $\left._{Z_{2}}^{*} \Delta_{1}\right) \quad$ is crepant birational.

Theorem 7. [NU73, Uen75, Gon13, FG14] Let $f:\left(X, \Delta_{X}\right) \rightarrow Z$ be a crepant log structure. Then:
(1) The $\operatorname{Bir}_{Z}^{c}\left(X, \Delta_{X}\right)$ action on $\omega_{X}^{[m]}\left(m \Delta_{X}\right)$ is finite for every $m \geq$ 0.
(2) If $Z$ is projective and $K_{X}+\Delta_{X} \sim_{\mathbb{Q}} f^{*}($ ample $\mathbb{Q}$-divisor) then the $\operatorname{Bir}_{k}^{c}\left(X, \Delta_{X}\right)$ action on $Z$ is finite. Q.E.D.

8 (Minimal dominating lc centers). Let $f:(X, \Delta) \rightarrow S$ be a dlt, weak crepant $\log$ structure. Let $W \subset S$ be an lc center and $\left\{W_{i}\right.$ : $i \in I(W)\}$ the minimal (with respect to inclusion) lc centers of $(X, \Delta)$ that dominate $W$. We claim that the set of their crepant birational isomorphism classes

$$
\begin{equation*}
\left\{\left(W_{i}, \operatorname{Diff}_{W_{i}}^{*} \Delta\right): i \in I(W)\right\} \tag{8.1}
\end{equation*}
$$

is a birational invariant of $f:(X, \Delta) \rightarrow S$.
To see this note that by [Sza94] we can assume that $(X, \Delta)$ is snc. Then it is enough to check birational invariance for one smooth blow up. If we blow up $V \subset X$ that is not an lc center, then the set of lc centers is unchanged.

If $V$ is an lc center that is the complete intersection of say $D_{1}, \ldots, D_{r} \subset$ $\lfloor\Delta\rfloor$, then we get an exceptional divisor $E_{V}$ that is a $\mathbb{P}^{r-1}$-bundle over $V$. Locally on $V$, we get a direct product

$$
\left(E_{V}, \operatorname{Diff}_{E_{V}}^{*} \Delta_{B_{V} X}\right) \cong\left(V, \operatorname{Diff}_{V}^{*} \Delta\right) \times\left(\mathbb{P}^{r-1},\left(x_{1} \cdots x_{r}=0\right)\right)
$$

thus every minimal lc center of $\left(V, \operatorname{Diff}_{V}^{*} \Delta\right)$ corresponds to $r$ isomorphic copies of itself among the minimal lc centers of $\left(E_{V}, \operatorname{Diff}_{E_{V}}^{*} \Delta_{B_{V} X}\right)$, hence among the minimal lc centers of $\left(B_{V} X, \Delta_{B_{V} X}\right)$. Q.E.D.

Our next aim is to prove that for crepant log structures, the invariant defined in (8.1) consist of a single birational equivalence class.

## $\mathbb{P}^{1}$-linking of minimal lc centers

Definition 9 ( $\mathbb{P}^{1}$-linking). A standard $\mathbb{P}^{1}$-link is a dlt, $\mathbb{Q}$-factorial, pair $\left(X, D_{1}+D_{2}+\Delta\right)$ whose sole lc centers are $D_{1}, D_{2}$ (hence $D_{1}$ and $D_{2}$ are disjoint) plus a proper morphism $\pi: X \rightarrow S$ such that $K_{X}+$ $D_{1}+D_{2}+\Delta \sim_{\mathbb{Q}, \pi} 0, \pi: D_{i} \rightarrow S$ are both isomorphisms and every reduced fiber red $X_{s}$ is isomorphic to $\mathbb{P}^{1}$.

Let $F$ denote a general smooth fiber. Then $\left(\left(K_{X}+D_{1}+D_{2}\right) \cdot F\right)=0$, hence $(\Delta \cdot F)=0$. That is, $\Delta$ is a vertical divisor, the projection gives an isomorphism $\left(D_{1}, \operatorname{Diff}_{D_{1}} \Delta\right) \cong\left(D_{2}, \operatorname{Diff}_{D_{2}} \Delta\right)$ and these pairs are klt.

The simplest example of a standard $\mathbb{P}^{1}$-link is a product

$$
\left(S \times \mathbb{P}^{1}, S \times\{0\}+S \times\{\infty\}+\Delta_{S} \times \mathbb{P}^{1}\right)
$$

for some $\mathbb{Q}$-divisor $\Delta_{S}$.
It turns out that every standard $\mathbb{P}^{1}$-link is locally the quotient of a product. To see this note that $\left(\left(D_{1}-D_{2}\right) \cdot F\right)=0$, thus every point $s \in S$ has an open neighborhood $U$ such that $D_{1}-D_{2} \sim_{\mathbb{Q}} 0$ on $\pi^{-1}(U)$. Taking the corresponding cyclic cover we get another standard $\mathbb{P}^{1}$-link

$$
\tilde{\pi}:\left(\tilde{X}_{U}, \tilde{D}_{1}+\tilde{D}_{2}+\tilde{\Delta}\right) \rightarrow \tilde{U}
$$

where the $\tilde{D}_{i}$ are now Cartier divisors and $\tilde{\Delta}=\tilde{\pi}^{*} \tilde{\Delta}_{U}$ for some $\mathbb{Q}$-divisor $\tilde{\Delta}_{U}$. Here $\tilde{D}_{1} \sim \tilde{D}_{2}$, hence the linear system $\left|\tilde{D}_{1}, \tilde{D}_{2}\right|$ maps $\tilde{X}_{U}$ to $\mathbb{P}^{1}$. Together with $\tilde{\pi}$ this gives an isomorphism

$$
\left(\tilde{U} \times \mathbb{P}^{1}, \tilde{U} \times\{0\}+\tilde{U} \times\{\infty\}+\tilde{\Delta}_{U} \times \mathbb{P}^{1}\right) \cong\left(\tilde{X}_{U}, \tilde{D}_{1}+\tilde{D}_{2}+\tilde{\Delta}\right)
$$

Let $g:(X, \Delta) \rightarrow S$ be a crepant, dlt $\log$ structure and $Z_{1}, Z_{2} \subset X$ two lc centers. We say that $Z_{1}, Z_{2}$ are directly $\mathbb{P}^{1}$-linked if there is an lc center $W \subset X$ containing the $Z_{i}$ such that $g(W)=g\left(Z_{1}\right)=g\left(Z_{2}\right)$ and $\left(W, \operatorname{Diff}_{W}^{*} \Delta\right)$ is crepant birational to a standard $\mathbb{P}^{1}$-link with $Z_{i}$ mapping to $D_{i}$.

We say that $Z_{1}, Z_{2} \subset X$ are $\mathbb{P}^{1}$-linked if there is a sequence of lc centers $Z_{1}^{\prime}, \ldots, Z_{m}^{\prime}$ such that $Z_{1}^{\prime}=Z_{1}, Z_{m}^{\prime}=Z_{2}$ and $Z_{i}^{\prime}$ is directly $\mathbb{P}^{1}$-linked to $Z_{i+1}^{\prime}$ for $i=1, \ldots, m-1$ (or $Z_{1}=Z_{2}$ ).

The following strengthening of [KK10, 1.7] was the reason to introduce the notion of $\mathbb{P}^{1}$-linking.

Theorem 10. Let $k$ be a field and $S$ essentially of finite type over k. Let $f:(X, \Delta) \rightarrow S$ be a proper morphism such that $K_{X}+\Delta \sim_{\mathbb{Q}, f} 0$ and $(X, \Delta)$ is dlt. Let $s \in S$ be a point such that $f^{-1}(s)$ is connected (as a $k(s)$-scheme). Let $Z \subset X$ be minimal (with respect to inclusion)
among the lc centers of $(X, \Delta)$ such that $s \in f(Z)$. Let $W \subset X$ be an lc center of $(X, \Delta)$ such that $s \in f(W)$.

Then there is an lc center $Z_{W} \subset W$ such that $Z$ and $Z_{W}$ are $\mathbb{P}^{1}$ linked.

In particular, all the minimal (with respect to inclusion) lc centers $Z_{i} \subset X$ such that $s \in f\left(Z_{i}\right)$ are $\mathbb{P}^{1}$-linked to each other.

Remarks. For the applications it is crucial to understand the case when $k(s)$ is not algebraically closed.

Each $\mathbb{P}^{1}$-linking defines a birational map $Z \rightarrow Z_{W}$, but different $\mathbb{P}^{1}$-linkings can give different birational maps.

Proof. We use induction on $\operatorname{dim} X$ and on $\operatorname{dim} Z$.
Write $\lfloor\Delta\rfloor=\sum D_{i}$. By passing to a suitable étale neighborhood of $s \in S$ we may assume that each $D_{i} \rightarrow Y$ has connected fiber over $s$ and every lc center of $(X, \Delta)$ intersects $f^{-1}(s)$. (We need to do this without changing the residue field so that $f^{-1}(s)$ stays connected, cf. [Mil80, I.4.2].)

Assume first that $f^{-1}(s) \cap \sum D_{i}$ is connected. By suitable indexing, we may assume that $Z \subset D_{1}, W \subset D_{r}$ and $f^{-1}(s) \cap D_{i} \cap D_{i+1} \neq \emptyset$ for $i=1, \ldots, r-1$.

By induction, we can apply Theorem 10 to $D_{1} \rightarrow S$ with $Z$ as $Z$ and $D_{1} \cap D_{2}$ as $W$. We get that there is an lc center $Z_{2} \subset W$ such that $Z$ and $Z_{2}$ are $\mathbb{P}^{1}$-linked. As we noted in Definition $9, Z_{2}$ is also minimal (with respect to inclusion) among the lc centers of $(X, \Delta)$ such that $s \in f\left(Z_{2}\right)$. Note that $Z_{2}$ is an lc center of $\left(D_{1}, \operatorname{Diff}_{D_{1}}^{*}(\Delta)\right)$. By adjunction, it is an lc center of $(X, \Delta)$ and also an lc center of $\left(D_{2}, \operatorname{Diff}_{D_{2}}^{*}(\Delta)\right)$.

Next we apply Theorem 10 to $D_{2} \rightarrow S$ with $Z_{2}$ as $Z$ and $D_{2} \cap D_{3}$ as $W$, and so on. At the end we work on $D_{r} \rightarrow S$ with $Z_{r}$ as $Z$ and $W$ as $W$ to get an lc center $Z_{W} \subset W$ such that $Z$ and $Z_{W}$ are $\mathbb{P}^{1}$-linked. This proves the first claim if $f^{-1}(s) \cap \sum D_{i}$ is connected.

If $f^{-1}(s) \cap \sum D_{i}$ is disconnected, then write $\Delta=\sum_{i=1}^{m} D_{i}+\Delta_{1}$. We claim that in this case $m=2$ and $D_{1}, D_{2} \subset X$ are directly $\mathbb{P}^{1}$-linked (by $W=X$ ). We may assume that $X$ is $\mathbb{Q}$-factorial.

First we show that $\sum D_{i}$ dominates $S$. Indeed, consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(-\sum D_{i}\right) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{\sum D_{i}} \rightarrow 0
$$

and its push-forward

$$
\mathcal{O}_{S} \cong f_{*} \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{\sum D_{i}} \rightarrow R^{1} f_{*} \mathcal{O}_{X}\left(-\sum D_{i}\right)
$$

Since $-\sum D_{i} \sim_{\mathbb{Q}, f} K_{X}+\Delta_{1}$, the sheaf $R^{1} f_{*} \mathcal{O}_{X}\left(-\sum D_{i}\right)$ is torsion free by [Kol86] (see [KK10] for the extension to the klt case that we use).

Thus $\mathcal{O}_{S} \rightarrow f_{*} \mathcal{O}_{\sum D_{i}}$ is surjective hence $\sum D_{i} \rightarrow S$ has connected fibers, a contradiction.

This implies that $K_{X}+\Delta_{1}$ is not $f$-pseudo-effective and so by [BCHM10, 1.3.2] one can run the $\left(X, \Delta_{1}\right)$-MMP over $S$.

Every step is numerically $K_{X}+\sum D_{i}+\Delta_{1}$-trivial, hence $\sum D_{i}$ is ample on every extremal ray. Therefore a connected component of $\sum D_{i}$ can never be contracted by a birational contraction. By the Connectedness Theorem [Kol92, 17.4], the connected components of $\sum D_{i}$ are unchanged for birational contractions and flips. Thus, at some point, we must encounter a Fano contraction $p:\left(X^{*}, \Delta_{1}^{*}\right) \rightarrow V$ where $\sum D_{i}^{*}$ is $p$-ample. So there is an irreducible component, say $D_{1}^{*}$ that has positive intersection with the contracted ray. Therefore $D_{1}^{*}$ is $p$-ample. By assumption, there is another irreducible component, say $D_{2}^{*}$ that is disjoint from $D_{1}^{*}$. Let $F_{v} \subset X^{*}$ be any fiber that intersects $D_{2}^{*}$. Since $D_{2}^{*}$ is disjoint from $D_{1}^{*}$, we see that $D_{2}^{*}$ does not contain $F_{v}$. Thus $D_{2}^{*}$ also has positive intersection with the contracted ray, hence $D_{2}^{*}$ is also $p$-ample.

Thus $D_{1}^{*}$ and $D_{2}^{*}$ are both relatively ample (possibly multi-) sections of $p$ and they are disjoint. This is only possible if $p$ has fiber dimension 1 , the generic fiber is a smooth rational curve and $D_{1}^{*}$ and $D_{2}^{*}$ are sections of $p$.

Since $p$ is an extremal contraction, $R^{1} p_{*} \mathcal{O}_{X^{*}}=0$, which implies that every fiber of $p$ is a tree of smooth rational curves. Both $D_{1}^{*}$ and $D_{2}^{*}$ intersects every fiber in a single point and they both intersect every contracted curve. Thus every fiber is irreducible and so $p:\left(X^{*}, \Delta^{*}\right) \rightarrow V$ is a standard $\mathbb{P}^{1}$-link with $D_{1}^{*}, D_{2}^{*}$ as sections. As we noted in Definition 9 , the rest of $\Delta^{*}$ consists of vertical divisors. Thus any other $D_{i}^{*}$ would make $f^{-1}(s) \cap \sum D_{i}$ connected. Therefore $D_{1}^{*}, D_{2}^{*}$ are the only lc centers of $\left(X^{*}, D_{1}^{*}+D_{2}^{*}+\Delta_{1}^{*}\right)$ and so $D_{1}, D_{2}$ are the only lc centers of $(X, \Delta)$. As noted at the end of Definition $6, D_{1}, D_{2} \subset X$ are directly $\mathbb{P}^{1}$-linked (by $W=X$ ).
Q.E.D.

Corollary 11. Let $f:\left(X, \Delta_{X}\right) \rightarrow S$ be a dlt, crepant log structure. Let $Y \subset X$ be an lc center. Consider the Stein factorization $\left.f\right|_{Y}: Y \xrightarrow{f_{Y}}$ $S_{Y} \xrightarrow{\pi} S$ and set $\Delta_{Y}:=\operatorname{Diff}_{Y}^{*} \Delta_{X}$. Then
(1) $f_{Y}:\left(Y, \Delta_{Y}\right) \rightarrow S_{Y}$ is a dlt, crepant log structure.
(2) Let $W_{Y} \subset S_{Y}$ be an lc center of $f_{Y}:\left(Y, \Delta_{Y}\right) \rightarrow S_{Y}$. Then $\pi\left(W_{Y}\right) \subset S$ is an lc center of $f:\left(X, \Delta_{X}\right) \rightarrow S$ and every minimal lc center of $\left(Y, \Delta_{Y}\right)$ dominating $W_{Y}$ is also a minimal lc center of $\left(X, \Delta_{X}\right)$ dominating $\pi\left(W_{Y}\right)$.
(3) Let $W \subset S$ be an lc center of $f:\left(X, \Delta_{X}\right) \rightarrow S$. Then every irreducible component of $\pi^{-1}(W)$ is an lc center of $f_{Y}$ : $\left(Y, \Delta_{Y}\right) \rightarrow S_{Y}$.

Proof. (1) is clear. To see (2), note that $W_{Y}$ is dominated by an lc center $V_{Y}$ of $\left(Y\right.$, Diff $\left._{Y}^{*} \Delta\right)$. Thus, by adjunction, $V_{Y}$ is also an lc center of $(X, \Delta)$, hence $\pi\left(W_{Y}\right)=f\left(V_{Y}\right)$ is an lc center of $S$. By Theorem 10, a minimal lc center of $Y$ that dominates $W_{Y}$ is also a minimal lc center of $X$ that dominates $\pi\left(W_{Y}\right)$. Thus $\operatorname{Src}\left(W_{Y}, Y, \Delta_{Y}\right) \sim$ $\operatorname{Src}\left(\pi\left(W_{Y}\right), X, \Delta_{X}\right)$.

Finally let $W \subset S$ be an lc center of $f:\left(X, \Delta_{X}\right) \rightarrow S$ and $w \in W$ the generic point. Let $V_{X} \subset X$ be a minimal lc center that dominates $W$. By Theorem 10, there is an lc center $V_{Y} \subset Y$ that is $\mathbb{P}^{1}$-linked to $V_{X}$. By adjunction, $V_{Y}$ is also an lc center of $\left(Y\right.$, Diff $\left._{Y}^{*} \Delta\right)$. Thus $f_{Y}\left(V_{Y}\right) \subset S_{Y}$ is an lc center of $f_{Y}:\left(Y, \Delta_{Y}\right) \rightarrow S_{Y}$ and it is also one of the irreducible components of $\pi^{-1}(W)$.

In order to get (3), after replacing $S$ by an étale neighborhood of $w$, we may assume that $Y=\cup Y_{j}$ such that each $f^{-1}(w) \cap Y_{j}$ is connected. By the previous argument, each $Y_{j}$ yields an lc center $f_{Y_{j}}\left(V_{Y_{j}}\right) \subset S_{Y_{j}}$ and together these show that every irreducible component of $\pi^{-1}(W)$ is an lc center of $f_{Y}:\left(Y, \Delta_{Y}\right) \rightarrow S_{Y}$.
Q.E.D.

Example 12. Fix $m \geq 3$ and $\epsilon$ a primitive $m$ th root of unity. On $\mathbb{P}^{m-1}$ consider the $\mu_{m}$-action generated by

$$
\tau_{1}:\left(x_{0}: x_{1}: \cdots: x_{m-1}\right) \mapsto\left(x_{0}: \epsilon x_{1}: \cdots: \epsilon^{m-1} x_{m-1}\right)
$$

The action moves the divisor $D_{0}:=\left(x_{0}+x_{1}+\cdots+x_{m-1}=0\right)$ into $m$ different divisors $D_{0}, \ldots, D_{m-1}$. One easily checks that $\left(\mathbb{P}^{m-1}, D_{0}+\right.$ $\cdots+D_{m-1}$ ) is snc (if $\epsilon$ is in our base field) and has trivial $\log$ canonical class.

Let $A$ be an abelian variety with a $\mu_{m}$-action $\tau_{2}$. On

$$
\left(\mathbb{P}^{m-1} \times A, \Delta:=D_{0} \times A+\cdots+D_{m-1} \times A\right)
$$

we have a $\mu_{m}$-action generated by $\tau:=\left(\tau_{1}, \tau_{2}\right)$.
Let $X_{1}:=\left(\mathbb{P}^{m-1} \times A\right) /\langle\tau\rangle$. The quotient of the boundary $\Delta$ has only 1 component but it has complicated self-intersections, hence it is not dlt. Let $\left(X, \Delta_{X}\right)$ be a dlt model.

We see that the minimal lc centers are isomorphic to $(A, 0)$ and the different $\mathbb{P}^{1}$-linkings between them differ from each other by a power of $\tau_{2}$.

## §3. Poincaré residue map

Definition 13. Let $(X, \Delta)$ be a dlt pair and $Z \subset X$ an lc center. As in Definition 4, if $\omega_{X}^{[m]}(m \Delta)$ is locally free, then, by iterating the usual Poincaré residue maps for divisors, we get a Poincaré residue map

$$
\begin{equation*}
\mathcal{R}_{X \rightarrow Z}^{m}:\left.\omega_{X}^{[m]}(m \Delta)\right|_{Z} \xrightarrow{\cong} \omega_{Z}^{[m]}\left(m \cdot \operatorname{Diff}_{Z}^{*} \Delta\right) \tag{13.1}
\end{equation*}
$$

(This is well defined if $m$ is even, defined only up to sign if $m$ is odd.)
Let $f:(X, \Delta) \rightarrow Y$ be a dlt, weak crepant $\log$ structure. Choose $m>0$ even such that $\omega_{X}^{[m]}(m \Delta) \sim f^{*} L$ for some line bundle $L$ on $Y$. Let $Z \subset X$ be an lc center of $(X, \Delta)$. We can view the Poincaré residue map as

$$
\begin{equation*}
\mathcal{R}_{X \rightarrow Z}^{m}:\left.\left.f^{*} L\right|_{Z} \cong \omega_{X}^{[m]}(m \Delta)\right|_{Z} \xrightarrow{\cong} \omega_{Z}^{[m]}\left(m \cdot \operatorname{Diff}_{Z}^{*} \Delta\right) . \tag{13.2}
\end{equation*}
$$

The following result shows, that, for minimal lc centers, (13.2) is essentially independent of the choice of $Z$.

Proposition 14. Let $f:(X, \Delta) \rightarrow Y$ be a dlt crepant log structure. Choose $m>0$ even such that $\omega_{X}^{[m]}(m \Delta) \cong f^{*} L$ for some line bundle $L$ on $Y$. Let $Z_{1}, Z_{2}$ be minimal lc centers of $(X, \Delta)$ such that $f\left(Z_{1}\right)=f\left(Z_{2}\right)$. Then there is a birational map $\phi: Z_{2} \rightarrow Z_{1}$ such that the following diagram commutes

$$
\begin{array}{ccc}
\omega_{X}^{[m]}(m \Delta) \cong f^{*} L \cong & \omega_{X}^{[m]}(m \Delta) \\
\mathcal{R}_{X \rightarrow Z_{1}}^{m} \downarrow & & \downarrow \mathcal{R}_{X \rightarrow Z_{2}}^{m}  \tag{14.1}\\
\omega_{Z_{1}}^{[m]}\left(m \operatorname{Diff}_{Z_{1}}^{*} \Delta\right) & \xrightarrow{\phi^{*}} & \omega_{Z_{2}}^{[m]}\left(m \operatorname{Diff}_{Z_{2}}^{*} \Delta\right)
\end{array}
$$

Proof. By Theorem 10 it is sufficient to prove this in case there is an lc center $W$ that is birational to a $\mathbb{P}^{1}$-bundle $\mathbb{P}^{1} \times U$ with $Z_{1}, Z_{2}$ as sections. Thus projection to $U$ provides a birational isomorphism $\phi: Z_{2} \rightarrow Z_{1}$.

Since $\mathcal{R}_{X \rightarrow Z_{i}}^{m}=\mathcal{R}_{W \rightarrow Z_{i}}^{m} \circ \mathcal{R}_{X \rightarrow W}^{m}$, we may assume that $X=W$. The sheaves in (14.1) are torsion free, hence it is enough to check commutativity after localizing at the generic point of $U$. This reduces us to the case when $W=\mathbb{P}_{L}^{1}$ with coordinates $(x: y), Z_{1}=(0: 1)$ and $Z_{2}=(1: 0)$. A generator of $H^{0}\left(\mathbb{P}^{1}, \omega_{\mathbb{P}^{1}}\left(Z_{1}+Z_{2}\right)\right)$ is $d x / x$ which has residue 1 at $Z_{1}$ and -1 at $Z_{2}$. Thus (14.1) commutes for $m$ even and anti-commutes for $m$ odd.
Q.E.D.

Remark 15. By Proposition 14 we get a Poincaré residue map as stated in (1.4) but it is not yet completely canonical. We think of $\left(Z, \Delta_{Z}\right)$
as an element of a crepant birational equivalence class, thus so far $\mathcal{R}^{m}$ is defined only up to the action of $\operatorname{Bir}_{Y}^{c}\left(Z, \Delta_{Z}\right)$. However, by Theorem 7, the image of this action is a finite group of $r$ th roots of unity for some $r$. Thus the $\operatorname{Bir}_{Y}^{c}\left(Z, \Delta_{Z}\right)$ action is trivial on $\omega_{Z}^{[m r]}\left(m r \Delta_{Z}\right)$ hence

$$
\begin{equation*}
\mathcal{R}^{m r}:\left.\omega_{X}^{[m r]}(m r \Delta)\right|_{Z} \cong \omega_{Z}^{[m r]}\left(m r \Delta_{Z}\right) \tag{15.1}
\end{equation*}
$$

is completely canonical. Assume next that $\omega_{X}^{[m r]}(m r \Delta) \sim f^{*} L$. Let us factor $\left.f\right|_{Z}: Z \rightarrow f(Z)$ using $g: Z \rightarrow W$ and the normalization $n: W \rightarrow f(Z)$. Then we can push forward (15.1) to get an isomorphism

$$
\begin{equation*}
n^{*} L \cong\left(g_{*} \omega_{Z}^{[m]}\left(m \Delta_{Z}\right)\right)^{\mathrm{inv}} \tag{15.2}
\end{equation*}
$$

where the exponent inv denotes the invariants under the action of the group of birational self-maps $\operatorname{Bir}_{Y}\left(Z, \Delta_{Z}\right)$. This shows the second isomorphism in (1.4).

Notation 16. Let $\left(Y, \Delta_{Y}\right)$ be lc and $\left(X, \Delta_{X}\right) \rightarrow\left(Y, \Delta_{Y}\right)$ a crepant, dlt model. Let $W \subset Y$ be an lc center of $\left(Y, \Delta_{Y}\right)$ and $Z \subset X$ minimal (with respect to inclusion) among the lc centers of ( $X, \Delta_{X}$ ) that dominate $W$. By Definition 13, we obtain a Poincaré residue map $\mathcal{R}_{X \rightarrow Z}$.

Let $D \subset\left\lfloor\Delta_{Y}\right\rfloor$ be a divisor with normalization $\pi: D^{n} \rightarrow D$. Let $D_{X} \subset X$ be its birational transform on $X$ and set $\Delta_{D_{X}}:=\operatorname{Diff}_{D_{X}}^{*} \Delta_{X}$. Let $W_{D} \subset D^{n}$ be an lc center of $\left(D^{n}, \operatorname{Diff}_{D^{n}}^{*} \Delta_{Y}\right)$. Then $W_{X}:=\pi\left(W_{D}\right)$ is an lc center of $\left(Y, \Delta_{Y}\right)$. Choose minimal lc centers $Z_{X} \subset X$ (resp. $Z_{D} \subset D_{X}$ ) dominating $W_{X}$ (resp. $W_{D}$ ).

Theorem 17. Notation and assumptions as above. Then there is a birational map $\phi: Z_{D} \rightarrow Z_{X}$ such that for $m$ sufficiently divisible, the following diagram commutes

$$
\begin{array}{ccc}
\omega_{X}^{[m]}\left(m \Delta_{X}\right) & \xrightarrow{\mathcal{R}_{X \rightarrow D_{X}}^{m}} & \omega_{D_{X}}^{[m]}\left(m \Delta_{D_{X}}\right) \\
\mathcal{R}_{X \rightarrow Z_{X}}^{m} \downarrow & & \downarrow \mathcal{R}_{D_{X} \rightarrow Z_{D}}^{m} \\
\omega_{Z_{X}}^{[m]}\left(m \operatorname{Diff}_{Z_{X}}^{*} \Delta_{X}\right) & \xrightarrow{\phi^{*}} & \omega_{Z_{D}}^{[m]}\left(m \text { Diff }_{Z_{D}}^{*} \Delta_{D_{X}}\right)
\end{array}
$$

Proof. If we choose $Z_{X}$ as the image of $Z_{D}$, this holds by the definition of the higher codimension residue maps. This and Proposition 14 proves the claim for every other choice of $Z_{X}$.
Q.E.D.

## §4. Sources and Springs

Definition 18. Let $f:(X, \Delta) \rightarrow S$ be a crepant, dlt log structure and $Z \subset S$ an lc center. An lc center $Z^{\prime}$ of $(X, \Delta)$ is called a source of
$Z$ if $f\left(Z^{\prime}\right)=Z$ and $Z^{\prime}$ is minimal (with respect to inclusion) among the lc centers that dominate $Z$. By restriction we have

$$
\left.f\right|_{Z^{\prime}}:\left(Z^{\prime}, \operatorname{Diff}_{Z^{\prime}}^{*} \Delta\right) \rightarrow Z \quad \text { and } \quad K_{Z^{\prime}}+\operatorname{Diff}_{Z^{\prime}}^{*} \Delta \sim_{f, \mathbb{Q}} 0
$$

By adjunction, there is a one-to-one correspondence between lc centers of $\left(Z^{\prime}\right.$, Diff $\left._{Z^{\prime}}^{*}, \Delta\right)$ and lc centers of $(X, \Delta)$ that are contained in $Z^{\prime}$. Thus $Z^{\prime}$ is a source of $Z$ iff the general fiber of $\left(Z^{\prime}, \operatorname{Diff}_{Z^{\prime}}^{*} \Delta\right) \rightarrow Z$ is klt.

By Theorem 10 all sources of $Z$ are birational to each other (as weak crepant $\log$ structures over $Z$ ). Any representative of their birational equivalence class will be denoted by $\operatorname{Src}(Z, X, \Delta)$. One can choose a representative $\left(S^{t}, \Delta^{t}\right) \rightarrow Z$ whose generic fiber is terminal. Such models are still not unique, but their generic fibers are isomorphic outside codimension 2 sets. However, if there is an irreducible component of $\Delta^{t}$ whose coefficient is 1 (these can not dominate $Z$ ) then it does not seem possible to choose a sensible subclass of models that are isomorphic to each other outside codimension 2 sets.

Note further that by Remark 8, if two crepant $\log$ structures $f_{i}$ : $\left(X_{i}, \Delta_{i}\right) \rightarrow Y$ are crepant birational over $Y$, then $\operatorname{Src}\left(Z, X_{1}, \Delta_{1}\right)$ is crepant birational to $\operatorname{Src}\left(Z, X_{2}, \Delta_{2}\right)$.

One can uniquely factor $\left.f\right|_{Z^{\prime}}$ as

$$
\begin{equation*}
\left.f\right|_{Z^{\prime}}:\left(Z^{\prime}, \operatorname{Diff}_{Z^{\prime}}^{*} \Delta^{\prime}\right)=\operatorname{Src}(Z, X, \Delta) \xrightarrow{c_{Z}} \tilde{Z}^{\prime} \xrightarrow{p_{Z}} Z \tag{18.1}
\end{equation*}
$$

where $\tilde{Z}^{\prime}$ is normal, $p_{Z}$ is finite and $c_{Z}$ has connected fibers.
Thus in (18.1), $Z^{\prime}$ is uniquely defined up to isomorphism over $Z$. Its isomorphism class will be denoted by $\operatorname{Spr}(Z, X, \Delta)$ and called the spring of $Z$.

Define the group of source-automorphisms of $\operatorname{Spr}(Z, X, \Delta)$ as

$$
\operatorname{Aut}^{s} \operatorname{Spr}(Z, X, \Delta):=\operatorname{im}\left[\operatorname{Bir}_{k}^{c} \operatorname{Src}(Z, X, \Delta) \rightarrow \operatorname{Aut}_{k} \operatorname{Spr}(Z, X, \Delta)\right]
$$

By Theorem 7, if $K_{X}+\Delta$ is ample then $\operatorname{Aut}^{s} \operatorname{Spr}(Z, X, \Delta)$ is finite for every lc center $Z \subset X$.

Let $(Y, \Delta)$ be lc and $f:\left(X, \Delta_{X}\right) \rightarrow(Y, \Delta)$ a dlt model. Let $Z \subset Y$ be an lc center of $(Y, \Delta)$. As noted above, the source $\operatorname{Src}\left(Z, X, \Delta_{X}\right)$ of $Z$ depends only on $(Y, \Delta)$ but not on the choice of $\left(X, \Delta_{X}\right)$. Thus we also use $\operatorname{Src}(Z, Y, \Delta)($ resp. $\operatorname{Spr}(Z, Y, \Delta))$ to denote the source (resp. spring) of $Z$.

Next we prove (1.5).
Proposition 19. Let $f:(X, \Delta) \rightarrow Y$ be a crepant log structure and $Z \subset Y$ an lc center. Then the field extension $k(\operatorname{Spr}(Z, X, \Delta)) / k(Z)$ is

Galois and

$$
\operatorname{Gal}(\operatorname{Spr}(Z, X, \Delta) / Z) \subset \operatorname{Aut}^{s} \operatorname{Spr}(Z, X, \Delta)
$$

Proof. We may localize at the generic point of $Z$. Thus we may assume that $Z$ is a point and then prove the following more precise result.

Lemma 20. Let $g:(X, \Delta) \rightarrow Y$ be a weak crepant log structure over a field $k$. Assume that $(X, \Delta)$ is dlt and $X$ is $\mathbb{Q}$-factorial. Let $z \in Y$ be an lc center such that $g^{-1}(z)$ is connected (as a $k(z)$-scheme). Then there is a unique smallest finite field extension $K(z) \supset k(z)$ such that the following hold.
(1) Every lc center of $\left(X_{\bar{k}}, \Delta_{\bar{k}}\right)$ that intersects $g^{-1}(z)$ is defined over $K(z)$.
(2) Let $W_{\bar{z}} \subset Y_{\bar{k}}$ be a minimal lc center contained in $g^{-1}(z)$. Then $K(z)=k_{c h}\left(W_{\bar{z}}\right)$, the field of definition of $W_{\bar{z}}$.
(3) $K(z) \supset k(z)$ is a Galois extension.
(4) Let $W_{z}$ be a minimal lc center contained in $g^{-1}(z)$. Then

$$
\left.\operatorname{Bir}_{k(z)}^{c}\left(W_{z}, \operatorname{Diff}_{W_{z}}^{*} \Delta\right) \rightarrow \operatorname{Gal}(K(z)) / k(z)\right) \quad \text { is surjective. }
$$

Proof. There are only finitely many lc centers and a conjugate of an lc center is also an lc center. Thus the field of definition of any lc center is a finite extension of $k$. Since $K(z)$ is the composite of some of them, it is finite over $k(z)$.

Let $W_{\bar{z}} \subset X_{\bar{k}}$ be a minimal lc center contained in $g^{-1}(z)$ and $k_{c h}\left(W_{\bar{z}}\right)$ its field of definition. Let $D_{i} \subset\lfloor\Delta\rfloor$ be the irreducible components that contain $W_{\bar{z}}$. Each $D_{i}$ is smooth at the generic point of $W_{\bar{z}}$, hence the $\bar{k}$-irreducible component of $D_{i}$ that contains $W_{\bar{z}}$ is also defined over $k_{c h}\left(W_{\bar{z}}\right)$. Thus every lc center of $\left(X_{\bar{k}}, \Delta_{\bar{k}}\right)$ containing $W_{\bar{z}}$ is also defined over $k_{c h}\left(W_{\bar{z}}\right)$. Therefore, any lc center that is $\mathbb{P}^{1}$-linked to $W_{\bar{z}}$ is defined over $k_{c h}\left(W_{\bar{z}}\right)$. By Theorem 10 this implies that every lc center of $\left(X_{\bar{k}}, \Delta_{\bar{k}}\right)$ that intersects $g^{-1}(z)$ is defined over $k_{c h}\left(W_{\bar{z}}\right)$, hence $k_{c h}\left(W_{\bar{z}}\right) \supset K(z)$. By construction, $k_{c h}\left(W_{\bar{z}}\right) \subset K(z)$, thus $k_{c h}\left(W_{\bar{z}}\right)=K(z)$.

A conjugate of $W_{\bar{z}}$ over $k(z)$ is defined over the corresponding conjugate field of $k_{c h}\left(W_{\bar{z}}\right)$. By the above, every conjugate of the field of $k_{c h}\left(W_{\bar{z}}\right)$ over $k(z)$ is itself, hence $k_{c h}\left(W_{\bar{z}}\right)=K(z)$ is Galois over $k(z)$.

Finally, in order to see (4), fix $\sigma \in \operatorname{Gal}(K(z) / k(z))$ and let $W_{\bar{z}}^{\sigma}$ be the corresponding conjugate of $W_{\bar{z}}$. By Theorem $10, W_{\bar{z}}^{\sigma}$ and $W_{\bar{z}}$ are $\mathbb{P}^{1}$-linked over $K(z)$; fix one such $\mathbb{P}^{1}$-link. The union of the conjugates of this $\mathbb{P}^{1}$-link over $k(z)$ define an element of $\operatorname{Bir}_{k(z)}^{c}\left(W_{z}, \operatorname{Diff}_{W_{z}}^{*} \Delta\right)$ which
induces $\sigma$ on $K(z) / k(z)$. (The $\mathbb{P}^{1}$-link is not unique, hence the lift is not unique. Thus in (4) we only claim surjectivity, not a splitting.) Q.E.D.

We also note the following direct consequence of Corollary 11.
Corollary 21 (Adjunction for sources). Let $(X, D+\Delta)$ be lc and $n: D^{n} \rightarrow D$ the normalization. Let $Z_{D} \subset D^{n}$ be an lc center of $\left(D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right)$ and $Z_{X}:=n\left(Z_{D}\right)$ its image in $X$. Then
(1) $\operatorname{Src}\left(Z_{D}, D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right) \stackrel{\text { cbir }}{\sim} \operatorname{Src}\left(Z_{X}, X, D+\Delta\right)$ and
(2) $\operatorname{Spr}\left(Z_{D}, D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right) \cong \operatorname{Spr}\left(Z_{X}, X, D+\Delta\right)$.
Q.E.D.

## §5. Applications to slc pairs

22 (Normalization of slc pairs). Let $(X, \Delta)$ be a semi log canonical pair. Let $\pi: \bar{X} \rightarrow X$ denote the normalization of $X, \bar{\Delta}$ the divisorial part of $\pi^{-1}(\Delta)$ and $\bar{D} \subset \bar{X}$ the conductor of $\pi$. Since $X$ is seminormal, $\bar{D}$ is reduced. $X$ has an ordinary node at a codimension 1 singular point, thus interchanging the two preimages of the node gives an involution $\tau$ of the normalization $n: \bar{D}^{n} \rightarrow \bar{D}$. This gives an injection

$$
\{\text { slc pairs }(X, \Delta)\} \quad \hookrightarrow \quad\left\{\begin{array}{c}
\text { lc pairs }(\bar{X}, \bar{D}+\bar{\Delta})  \tag{22.1}\\
\text { plus an involution } \tau \text { of } \bar{D}^{n}
\end{array}\right\}
$$

For many purposes, it is important to understand the image of this map. That is, we would like to know which quadruples $(\bar{X}, \bar{D}+\bar{\Delta}, \tau)$ correspond to an slc pair $(X, \Delta)$. An easy condition to derive is that $\tau$ is an involution not just of the variety $\bar{D}^{n}$ but of the lc pair $\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)$. Thus we obtain a refined version of the map

$$
\{\text { slc pairs }(X, \Delta)\} \quad \hookrightarrow \quad\left\{\begin{array}{c}
\text { lc pairs }(\bar{X}, \bar{D}+\bar{\Delta})  \tag{22.2}\\
\text { plus an involution } \tau \\
\text { of }\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)
\end{array}\right\} .
$$

For surfaces, the above constructions are discussed in [Kol92, Sec.12]. The higher dimensional generalizations are straightforward; see [Kol13, Chap.5].

There are three major issues involved in trying to prove that the map (22.2) is surjective.
22.3.1. Does $\tau$ generate a finite equivalence relation?

The normalization $n: \bar{D}^{n} \rightarrow \bar{D} \rightarrow \bar{X}$ and $\tau$ generate an equivalence relation $R(\tau)$, called the gluing relation, on the points of $\bar{X}$ by declaring $n(p) \sim n(\tau(p))$ for every $p \in \bar{D}^{n}$. It is easy to see (cf. [Kol12]) that $R(\tau)$
is a set-theoretic, pro-finite, algebraic equivalence relation. That is, one can give $R(\tau)$ by countably many subschemes

$$
\left\{R_{i} \subset \bar{X} \times \bar{X}: i \in I\right\}
$$

such that $\cup_{i} R_{i}(K) \subset \bar{X}(K) \times \bar{X}(K)$ is an equivalence relation on $\bar{X}(K)$ for every algebraically closed field $K$ and the coordinate projections induce finite morphisms

$$
\pi_{1}: R_{i} \rightarrow \bar{X} \quad \text { and } \quad \pi_{2}: R_{i} \rightarrow \bar{X}
$$

(One can make the $R_{i}$ unique if we choose them irreducible, reduced and assume that none of them contains another.)

It is clear that if $X$ exists then every equivalence class of $R(\tau)$ is contained in a fiber of $\pi: \bar{X} \rightarrow X$. In particular, if $X$ exists then the $R(\tau)$-equivalence classes are finite. Equivalently, $I$ is a finite set.

In general the $R(\tau)$-equivalence classes need not be finite. Moreover, non-finiteness can appear in high codimension. This is the question that we will study here using the sources of lc centers, especially their Galois property (1.5).

A closely related example is given by [BT09]: there is a smooth curve $D$ of genus $\geq 2$ and a finite relation $R_{0} \subset D \times D$ such that both projections $R_{0} \rightrightarrows D$ are étale yet $R_{0}$ generates a non-finite equivalence relation.
22.3.2. Constructing $(X, \Delta)$ from $(\bar{X}, \bar{D}+\bar{\Delta}, \tau)$.

Following the method of [Kol12], it is proved in [Kol13, Chap.5], that if the $R(\tau)$-equivalence classes are finite, then $(X, \Delta)$ exists.
22.3.3. Is $K_{X}+\Delta a \mathbb{Q}$-Cartier divisor?

The answer turns out to be yes, see [Kol13, Chap.5], but my proof, using Poincaré residue maps and Theorem 7, is somewhat indirect.

As a consequence we obtain that (22.2) is one-to-one for pairs with ample log canonical class.

Theorem 23. Taking the normalization gives a one-to-one correspondence between the following two sets, where $X, \bar{X}$ are projective schemes over a field.
$\left\{\begin{array}{c}\text { slc pairs }(X, \Delta) \\ \text { such that } \\ K_{X}+\Delta \text { is ample }\end{array}\right\} \cong\left\{\begin{array}{c}\text { lc pairs }(\bar{X}, \bar{D}+\bar{\Delta}) \text { such that } \\ K_{\bar{X}}+\bar{D}+\bar{\Delta} \text { is ample plus an } \\ \text { involution } \tau \text { of }\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)\end{array}\right\}$.
This can be extended to the relative case as follows.

Theorem 24. Let $S$ be a scheme which is essentially of finite type over a field. Taking the normalization gives a one-to-one correspondence between the following two sets.
(1) Slc pairs $(X, \Delta)$ such that $X / S$ is proper and $K_{X}+\Delta$ is ample on the generic fiber of $W \rightarrow S$ for every lc center $W \subset X$.
(2) Lc pairs $(\bar{X}, \bar{D}+\bar{\Delta})$ such that $\bar{X} / S$ is proper and $K_{\bar{X}}+\bar{D}+\bar{\Delta}$ is ample on the generic fiber of $\bar{W} \rightarrow S$ for every lc center $\bar{W} \subset \bar{X}$, plus an involution $\tau$ of $\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)$.
Furthermore, the cases when $K_{X}+\Delta$ is ample on $X / S$ correspond to the cases when $K_{\bar{X}}+\bar{D}+\bar{\Delta}$ is ample on $\bar{X} / S$.

As we noted in (22.3), the following result implies Theorem 23.
Proposition 25. Let $(\bar{X}, \bar{D}+\bar{\Delta})$ be an lc pair and $\tau$ an involution of $\left(\bar{D}^{n}, \operatorname{Diff}_{\bar{D}^{n}} \bar{\Delta}\right)$.

Assume that $X$ is proper over a base scheme $S$ that is essentially of finite type over a field. Assume furthermore that $K_{\bar{X}}+\bar{D}+\bar{\Delta}$ is ample on the generic fiber of $\bar{W} \rightarrow S$ for every lc center $\bar{W} \subset \bar{X}$.

Then the gluing relation $R(\tau)$, defined in (22.3.1), is finite.
This in turn will be derived from Theorem 28 on the gluing relation $R(\tau)$ which applies whether $K_{\bar{X}}+\bar{D}+\bar{\Delta}$ is ample or not.

Definition 26. Let $Y$ be a normal scheme and $R=\cup_{i \in I} R_{i} \subset Y \times Y$ a set-theoretic, pro-finite, algebraic equivalence relation where the $R_{i}$ are irreducible.
$R$ is called a groupoid if every $R_{i}$ is the graph of an isomorphism between two irreducible components of $Y$.

Let $Y^{j} \subset Y$ be an irreducible component. The restriction of $R$ to $Y^{j}$ is $R^{j}:=R \cap\left(Y^{j} \times Y^{j}\right)$. If $R$ is a groupoid then one can identify $R^{j}$ with a subgroup of $\operatorname{Aut}\left(Y^{j}\right)$ called the stabilizer of $Y^{j}$ in $R$.

We are now ready to formulate and prove a structure theorem for gluing relations. Roughly speaking, we prove that for every lc center $\bar{W} \subset \bar{X}$ there is a "canonically" defined finite cover $p: \tilde{W} \rightarrow \bar{W}$ such that $(p \times p)^{-1}(R(\tau) \cap(\bar{W} \times \bar{W}))$ is a groupoid and the stabilizer action $W$ is compatible with $p^{*}\left(K_{\bar{X}}+\bar{D}+\bar{\Delta}\right)$. The compatibility condition is somewhat delicate to state. Thus I give the actual construction of $\tilde{W}$ and then specify the compatibility condition for that particular case.

Notation 27. Let $(X, \Delta)$ be lc. Let $S_{i}^{*}(X, \Delta)$ be the union of all $\leq i$-dimensional lc centers of $(X, \Delta)$ and set $S_{i}(X, \Delta):=S_{i}^{*}(X, \Delta) \backslash$ $S_{i-1}^{*}(X, \Delta)$. Let $Z_{i j}^{0} \subset S_{i}(X, \Delta)$ be the irreducible components. The closure $Z_{i j}$ of $Z_{i j}^{0}$ is an lc center of $(X, \Delta)$, hence it has a spring $p_{i j}$ :
$\operatorname{Spr}\left(Z_{i j}, X, \Delta\right) \rightarrow Z_{i j} . \operatorname{Set} \operatorname{Spr}\left(Z_{i j}^{0}, X, \Delta\right):=p_{i j}^{-1} Z_{i j}^{0}$ and

$$
\operatorname{Spr}_{i}(X, \Delta):=\amalg_{j} \operatorname{Spr}\left(Z_{i j}^{0}, X, \Delta\right)
$$

Let $p_{i}: \operatorname{Spr}_{i}(X, \Delta) \rightarrow S_{i}(X, \Delta)$ be the induced morphism. Then $p_{i}$ is finite, surjective and universally open since $S_{i}(X, \Delta)$ is normal. Furthermore, $p_{i}$ is Galois over every $Z_{i j}$ by Proposition 19.

Theorem 28. Let $(X, D+\Delta)$ be an lc pair, $\tau$ an involution of $\left(D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right)$ and $R(\tau) \subset X \times X$ the corresponding equivalence relation as in (22.3.1). Let $p_{i}: \operatorname{Spr}_{i}(X, D+\Delta) \rightarrow S_{i}$ be as above. Then
(1) $\left(p_{i} \times p_{i}\right)^{-1}\left(R(\tau) \cap\left(S_{i}(X, \Delta) \times S_{i}(X, \Delta)\right)\right)$ is a groupoid on $\operatorname{Spr}_{i}(X, D+\Delta)$.
(2) For every irreducible component $Z_{i j}^{0} \subset S_{i}(X, \Delta)$, the stabilizer of its spring $\operatorname{Spr}\left(Z_{i j}^{0}, X, D+\Delta\right) \subset \operatorname{Spr}_{i}(X, D+\Delta)$ is a subgroup of the source-automorphism group $\mathrm{Aut}^{s} \operatorname{Spr}\left(Z_{i j}, X, D+\Delta\right)$.
Proof. We need to describe how the generators of $R(\tau)$ pull back to the spring $\operatorname{Spr}_{i}(X, D+\Delta)$.

First, the preimage of the diagonal of $Z_{i j}^{0} \times Z_{i j}^{0}$ is a group $\Gamma\left(G_{i j}\right)$ and $G_{i j}=\operatorname{Gal}\left(\operatorname{Spr}\left(Z_{i j}, X, D+\Delta\right) / Z_{i j}\right)$ is a subgroup of Aut ${ }^{s} \operatorname{Spr}\left(Z_{i j}, X, D+\right.$ $\Delta)$ by Proposition 19.

Second, let $Z_{i j k} \subset D^{n}$ be an irreducible component of the preimage of $Z_{i j}$. Then $Z_{i j k}$ is an lc center of $\left(D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right)$ and

$$
\operatorname{Src}\left(Z_{i j k}, D^{n}, \operatorname{Diff}_{D^{n}} \Delta\right) \stackrel{c b i r}{\sim} \operatorname{Src}\left(Z_{i j}, X, D+\Delta\right)
$$

by Corollary 21. Thus, for each $i j k$, the isomorphism $\tau: D^{n} \cong D^{n}$ lifts to isomorphisms

$$
\tau_{i j k l}: \operatorname{Spr}\left(Z_{i j}^{0}, X, D+\Delta\right) \cong \operatorname{Spr}\left(Z_{i l}^{0}, X, D+\Delta\right)
$$

Given $i j k$, the value of $l$ is determined by $Z_{i l}:=n\left(\tau\left(Z_{i j k}\right)\right)$, but the lifting is defined only up to left and right multiplication by elements of $G_{i j}$ and $G_{i l}$.

Thus $\left(p_{i} \times p_{i}\right)^{-1}\left(R(\tau) \cap\left(S_{i}(X, \Delta) \times S_{i}(X, \Delta)\right)\right)$ is the groupoid generated by the $G_{i j}$ and the $\tau_{i j k l}$, hence the stabilizer of $\operatorname{Spr}\left(Z_{i j}^{0}, X, D+\Delta\right)$ is generated by the groups $\tau_{i j k l}^{-1} G_{i l} \tau_{i j k l}$. The latter are all subgroups of Aut ${ }^{s} \operatorname{Spr}\left(Z_{i j}, X, D+\Delta\right)$.
Q.E.D.

29 (Proof of Proposition 25). Since $\operatorname{Spr}_{i}(X, D+\Delta)$ has finitely many irreducible components, the groupoid is finite iff the stabilizer of each $\operatorname{Spr}\left(Z_{i j}^{0}, X, D+\Delta\right)$ is finite. By Theorem 28 this holds if the groups Aut ${ }^{s} \operatorname{Spr}\left(Z_{i j}, X, D+\Delta\right)$ are finite.

The automorphism group of a variety $\tilde{Z}$ over a base scheme $S$ injects into the automorphism group of the generic fiber $\tilde{Z}_{g e n}$.

By assumption, $K_{\bar{X}}+\bar{D}+\bar{\Delta}$ is ample on the generic fiber of $Z_{i j} \rightarrow$ $S$, thus Theorem 7 implies that each $\operatorname{Aut}^{s} \operatorname{Spr}\left(Z_{i j}, X, D+\Delta\right)$ is finite.
Q.E.D.

Acknowledgments. This paper was written while I visited RIMS, Kyoto University. I thank S. Mori and S. Mukai for the invitation and their hospitality. I am grateful to O. Fujino, C. Hacon, S. Kovács, S. Mori, Y. Odaka, V. Shokurov and C. Xu for many comments and corrections. Partial financial support was provided by the NSF under grant number DMS-0758275.

## References

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468.
[BPV84] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4, Springer-Verlag, Berlin, 1984.
[BT09] Fedor Bogomolov and Yuri Tschinkel, Co-fibered products of algebraic curves, Cent. Eur. J. Math. 7 (2009), no. 3, 382-386. MR 2534459 (2010i:14023)
[FG14] Osamu Fujino and Yoshinori Gongyo, Log pluricanonical representations and the abundance conjecture, Compos. Math. 150 (2014), no. 4, 593-620. MR 3200670
[Fuj07] Osamu Fujino, What is log terminal?, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62. MR 2359341
[Fuj11] , Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 3, 25-30. MR 2802603 (2012j:14023)
[Gon13] Yoshinori Gongyo, Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs, J. Algebraic Geom. 22 (2013), no. 3, 549-564. MR 3048544
[Kaw97] Yujiro Kawamata, Subadjunction of log canonical divisors for a subvariety of codimension 2, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., vol. 207, Amer. Math. Soc., Providence, RI, 1997, pp. 79-88. MR 1462926 (99a:14024)
[Kaw98] , Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893-899. MR 1646046 (2000d:14020)
[KK10] János Kollár and Sándor J. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), no. 3, 791-813. MR 2629988
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[Kol86] János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11-42. MR 825838 (87c:14038)
[Kol92] János Kollár (ed.), Flips and abundance for algebraic threefolds, Société Mathématique de France, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).
[Kol07] , Kodaira's canonical bundle formula and adjunction, Flips for 3 -folds and 4 -folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 134-162.
[Kol12] , Quotients by finite equivalence relations, Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, With an appendix by Claudiu Raicu, pp. 227-256. MR 2931872
[Kol13] , Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013, With the collaboration of Sándor Kovács.
[Mil80] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 ( $81 \mathrm{j}: 14002$ )
[NU73] Iku Nakamura and Kenji Ueno, An addition formula for Kodaira dimensions of analytic fibre bundles whose fibre are Moišezon manifolds, J. Math. Soc. Japan 25 (1973), 363-371. MR 0322213 (48 \#575)
[Oda13] Yuji Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645-661. MR 3010808
[OX12] Yuji Odaka and Chenyang Xu, Log-canonical models of singular pairs and its applications, Math. Res. Lett. 19 (2012), no. 2, 325-334.
[Sho13] V. V. Shokurov, Log adjunction: effectiveness and positivity (arXiv:1308.5160), 2013.
[Sza94] Endre Szabó, Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo 1 (1994), no. 3, 631-639. MR 1322695 (96f:14019)
[Uen75] Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, SpringerVerlag, Berlin, 1975, Notes written in collaboration with P. Cherenack.

Princeton University, Princeton NJ 08544-1000
E-mail address: kollar@math.princeton.edu

