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Abstract

Let {Z^s'x\t) : t > s} denote the reflected symmetric α-stable Levy
process in an orthant D (with nonconstant reflection field), starting at
(s,x). For 1 < a < 2,0 < s < t,x e ~D it is shown that Z{s'x\t) has a
probability density function which is continuous away from the boundary,
and a representation given.

1 Introduction

Due to their applications in diverse fields, symmetric stable Levy processes have
been studied recently by several authors; see [4], [5] and the references therein.
In the meantime reflected Levy processes have been advocated as heavy traffic
models for certain queueing/stochastic networks; see [14]. The natural way of
defining a reflected/regulated Levy process is via the Skorokhod problem as in
[9], [3], [11], [1].

In this article we consider reflected/regulated symmetric α-stable Levy process
in an orthant, show that transition probability density function exists when
1 < a < 2 and is continuous away from the boundary; the reflection field can
have fairly general time-space dependencies as in [11]. It may be emphasized
that unlike the case of reflected diffusions (see [10]) powerful tools/methods of
PDE theory are not available to us. To achieve our purpose we use an analogue
of a representation for transition density (of a reflected diffusion) given in [2].

Section 2 concerns preliminary results on symmetric o -stable Levy process in
JRd, its transition probability density function and the potential operator. In
Section 3, corresponding reflected process with time-space dependent reflection
field at the boundary is studied. A major effort goes into proving that the
distribution of the reflected process at any given time t > 0 gives zero probability
to the boundary.

2 Symmetric stable Levy process

Let (Ω,JΓ, {^i},P) be a filtered probability space, d > 2,0 < a < 2. Let
{B(t) : t > 0} be an ̂ -adapted d-dimensional symmetric a-stable Levy process.
That is, {B(t)} is an iRd-valued homogeneous Levy process (with independent
increments) with r.c.1.1. sample paths; it is roation invariant and

u, B(t) - x)}\B(0) = x] = exp{-t\u\a} (2.1)
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118 Reflected Levy Process

for t > 0, u G Md, x G Md. It is a pure jump strong Markov process. Using Levy-
Ito theorem and Ito's formula, it can be shown that the (weak) infinitesimal
generator of B( ) is given by the fractional Laplacian

( , ) j ^J{x)dξ (2.2)
\ξ\>r

whenever the right side makes sense, where C(d,a) = Γ ( ^ ) / [ 2 - α π d / 2 | Γ ( f )|];

the measure v(dξ) = C(d, a) ̂ ij+adξ is called the Levy measure of B( ) . Also,

for any t > 0,

P(B(t) φ B(t-)) = 0. (2.3)

See [4], [5], [7], [8] for more information.

For a function g on M ,^(x) = dg(x)/dxi,gij(x) = d2g(x)/dxidxj, 1 < i, j < d.

Lemma 2.1. If f e C%(lRd) then Δ * / 2 / G Ch(JRd).

Proof: For 0 < r < s, A?/s

2 is defined by

Φ{Z\%-mdξ. (2.4)

r<\ξ\<s

d)Let / 6 Cξ(Md). For any x G iRd observe that

l / ( X | ^ ~ / ( X ) l ^ (2.5)

and that as α > 0
oo

/ ^ / ( + 1 ) < oo. (2.6)

So continuity of / and dominated convergence theorem imply that Δ " ^ / is
well defined, bounded and continuous. Next, Taylor expansion gives

where ?/ is point on the line segment joining x and x -\-ξ. Since ^ H-> ̂  is an odd
function for each i

Note that Σ Λiίί/)^- = O(|e|2) and
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as α > 2. Since fij( ) G C^iR ) it is now easily seen that limΔ r{ / is well

defined, bounded and continuous. Since

Δ"/2/(z) = Δ?£/(s) + lim Δ^f/O*) (2.10)

the lemma now follows. D

It is known that the process B( ) has a transition density function; we now give
a representation for it.

Theorem 2.2. The transition probability density function of B(-) is given by

p(s,x;t,z)

for 0 < s < t < oo,x,z e ΊRd, where g( ) is the density function of the square
root of an ^ -stable positive random variable.

Proof: By homogeneity enough to consider s = 0, x = 0. Let t > 0. By
(2.1) and Proposition 2.5.5 (on pp. 79-80) of [13] it follows that B(t) =
(Bι(t),..., Bd(t)) is sub-gaussian and that there exist independent one-dimensional
random variables S,Ui,...,Ud such that Uι ~ JV(0,2t2/a), 1 < i < d,S is f-
stable positive random variable and (-Bi(ί),..., Bd(t)) ~ (S^Uι,S^U2,. ., S^Ud)>
Denoting by #(•) the density of 51/2, the joint density of ([/i,..., C/d, 51/2) is
given by

d/2 / 1 x d/a ( 1

() j
Using the invertible transformation (ξ i , . . . , ξd, r) t-̂  (rξi,...,
Md x (0, oo) the joint density of (#i(£), ...,Bd(t), S 1 / 2 ) is given by

If ^ l u ( l l

h\yi,' >yd,r) = -^h[-yι,...,-yd,r

d/2 / Λ x d/ot

Now integrating w.r.t. r we get (2.11). D

oo

Remark 2.3. From the preceding theorem it follows that J -^g(r)dr < oo
o

for k = 2,3,... Indeed note that g( ) depends only on α; so if we consider k-
dimensional symmetric α-stable Levy process then the transition density will
be given by (2.11) with d replaced by k; and as the density is well defined at
x — z the claim follows.

Proposition 2.4. Denote po(s, x; t, z) = dp(s, x\ t, z)/ds, Pi(s, x\ t, z)
dxj, 1 < ij < d.
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(i) Fix ί > 0 , z G Md. Let t0 < t; then p,Po,Pi,PίjA < hj < d are bounded

continuous functions of(s,x) on [0,£o] χ JRd'•

(ii) For any t > 0, δ > 0

(s,z; ί ,z) | :0<s <t,\z-x\>δ} <K(d,δ) (2.12)

where K(d, δ) is a constant depending only on d, δ and V x denotes gradient
w.r.t. x-variables.

Proof: (i) Since ye~y , y2e~y are bounded, using Remark 2.3 and dominated
convergence theorem, the assertion can be proved by differentiating w.r.t. s, x
under the integral in (2.11).

(ii) Since yd+2e~y is bounded, differentiating under the integral in (2.11) we
get for all 0 < s < t, \z — x\ > δ

= K(d,δ).

D

The following result indicates a connection between the transition density and
the generator; though it is not unexpected, a proof is given for the sake of
completeness.

Theorem 2.5. For fixed t > 0, z £ Md the function (s,x) ι-> p(s,x\t,z) satisfies
the Kolmogorov backward equation

Po(s, x\ t, z) + Δ^ / 2 p(s, X] t, z) = 0, s < t, x G Md (2.13)

where p0 is as in the preceding proposition and x in Δ%'2 signifies that Δ α / 2 is
applied to p as a function of x.

Proof: By the preceding proposition and Lemma 2.1 Ax p(s,x;t,z) is a
bounded continuous function. P u t u(s,x) = p(s,x;t,z),s < t,x E M . Us-
ing Ito's formula (see [7]) for 0 < s < c < t, x G Md

c

E{u{c, B(c)) - u(s, B(s)) - ί[uo(r, B(r)) + Aa^u{r, B(r))]dr\B(s) = x} = 0.

That is

/ p(c, y; t, z)p(s, x; c, y)dy - p(s, x; t, z)

c

= / \po(r,y;t,z) + A%/2p(r,y ,t,z)]p(s,χ-,r,y)dy dr.
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By Chapman-Kolmogorov equation, l.h.s. of the above is zero. As the above
holds for all c > s and the quantity within double brackets is bounded continuous
in (r, y), by Feller continuity one can obtain (2.13) from the above letting c j s.
D

We next look at the O-resolvent (or potential operator) associated with the
process B( ). For a measurable function φ on Md,x G Md define

oo oo

Gφ(x)= φ{z) p(O,x;t,z)dtdz = / φ(z)p(O,x]t,z)dz dt (2.14)

Md 0 0 ]Rd

whenever the r.h.s. makes sense. Since 0 < α < 2 < d, using (2.11) it is not
difficult to see that

oo

ί p(0,x;t,z) = C _ l , d _ α , z φ x (2.15)
J \z %\
0

which is the so called Riesz kernel.

Theorem 2.6. Let φ G C^(Md) and φ^φ^ψij^ 1 < i, j < d be integrable w.r.t.
the d-dimensional Lebesgue measure. Then (a) Gφ G C^(Md), (b) (Gφ)i(x) =
Gψi(x), {Gφ)iά{x) = Gψij{x\ x G Md,l < ij < d
(c) A^2Gφ(x) = -φ(x),x G Md. •

We need a lemma

Lemma 2.7. If f e L1 (Md) Π L°°(Md) then Gf is well defined, bounded and

continuous.

Proof: Let {Tt} be the contraction semigroup associated with B( ). Observe
that

1 oo

Gf(x) = j Ttf{x)dt + J j f(z)p(0, x\ t, z)dz dt. (2.16)

0 1 Md

Since Ttf is continuous for each t > 0 and |Tt/( )| < ||/||oo it is clear that the
first term on r.h.s. is bounded and continuous. By (2.11)

< K Γdla\f{z)\ l ( l j O θ )(ί)

which is integrable as 0 < a < 2 < d. So continuity of p in x now implies that
the second term on r.h.s. of (2.16) is bounded and continuous. •

Proof of Theorem 2.6: By Lemma 2.6 we get Gφ,Gφι,Gφij are bounded
continuous. A simple change of variables yields

oo

x)] = J J Φ ^ ^ " Φ)p(0,x;t,z)dz dt
0 JRd

oo

/ ψi(z)p(O,x]t,z)dz dt

0 Md
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by dominated convergence theroem; thus (Gφ)i(x) = Gψi(x). An analogous ar-
gument gives (Gφ)ij(x) — Gψij(x) for all x. By Lemma 2.1 note that Aa/2Gφ is
well defined, bounded and continuous. To prove the last assertion, by Chapman-
Kolmogorov equation we get

lim -
no t

lim -
αo t

oo oo

/ φ(z)p(0,x;t +s,z)dz ds - / φ(z)p(0;x;s, z)dz ds

0 ]Rd

t

~ φ(z)p(O,x;s,z)dz ds

O Md

for each x G IR , completing the proof. •

3 Reflected process

Let D — {x G IR : x% > 0,1 < i < d} be the d-dimensional positive or-
thant. The reflection field is a function R : [0, oo) x Md x Md -+ Md(M)
where IM^JR) is the space of (d x d) matrices with real entries. We write
R(t,y,z) = (rij(t,y,z)). We assume the following

Assumptions (Al) The function (y,z) ι—> Tij(t,y,z) is Lipschitz continuous,
uniformly in ί, for 1 < i, j < d.

(A2) For i φ j , there exist vij such that \rij(t,y,z)\ < vij for all t,y,z. Set
V = ((vij)) with i;^ = 0. We assume spectral radius of V = σ(V) < 1.

(A3) Take m(; -r) ΞΞ 1,1 < i < d.

(A2) is a uniform Harrison-Reiman condition that has proved useful in queueing
networks; (A3) is just a suitable normalization.

Let s > 0,x € D. The Skorokhod problem in D corresponding to {B(t) : t > s}
and R consists in finding ^-adapted r.c.1.1. processes Y(s'x\t), Z^s'x\t),t > s
such that
(i) Z^x\t) eDϊor aUί >s;

(ii) Yfs'x\s) = 0,y.(s'x)( ) is nondecreasing, 1 < i < d\

(iii) Y}SiX\') can increase only when Z^x\-) = 0; that is, for 1 < i < d,t > s,

t

= I l{0){z\s'x\r))dY^x\r),a.s. (3.1)
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(iv) Skorokhod equation holds, viz. for 1 < i < d, t > s

Z (t) = x + Bit) — B(s) + Y (t)
t

+ Σ / rtf ^ F ( S v E ) ( M " ) ' Z ( S ' X ) (w-))dy/θ>x) (u) (3.2)

or in vector notation

t

γ(s,x)ί.\ _ _, r>(f\ _ fξ(q\ _ μ / D ( 7 / y ( s > ί c ) Λ , _ > \ y{s,x) ( Ί l \ U y ( s , ϊ ) f . Λ / o o \

S

Solving the deterministic Skorokhod problem path by path one can solve the
above stochastic problem. Indeed the following result is given in [11].

Proposition 3.1. Assume (Al) - (A3). For each s > 0,x G D there is a unique
pair Z(s'x\ ), y ( s ' χ ) ( ) solving the above problem; also

Y}s'x)(t) < ((I - V)-1L<'<%(t),a.s. (3.4)

for t > s where Z/S'χ)( ) is given by

J (c) = sup maxjϋ, — [x̂  + £>i(t) — Bi(s)\\.
s<u<t

Moreover {(Z^x\t),Y^x\i)) : t > s} is an Tt-adapted D x D-valued Feller
continuous strong Markov process. Any discontinuity ofY^s'x^ ( , ω) or Z^S'X\-,UU)
has to be a discontinuity of B( ,ω). IfR is a function only oft, z then {Z^s'x\t) :
t > s} is a D-valued Feller continuous strong Markov process. D

The z-part of the above viz. {Z^s'x\t) : t > s} may be called the reflected (or
regulated) symmetric a-stable Levy process.

Proposition 3.2. Assume (Al) - (A3) and let 1 < α < 2. Then
E[var (Y(s'x\')',[s,t\)] < oo for all t > s > 0,x G D, where var (#(•); [α,6])
denotes the total variation of g over [α, b].

Proof: As Y{

 x (•) is nondecreasing for each ί it is enough to show that

< oo; also we may take s = 0,x = 0. Since a > 1 note that E\Bi(t)\a < oo for
all 1 < a! < a. As B( ) is symmetric note that it is a martingale. (3.4) of the
preceding proposition implies

E\Yfm(t)\a' < C E \ sup \Bi(r)\\ < C E\Bi{t)\a' < oo
L0<r<t J

by Doob's maximal inequality for any 1 < a' < a. The required conclusion now

follows. •

Note: In the context of reflected processes, the reflection terms are usually
specified only for z on the boundary. However, no matter how the reflection
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field is extended to D or Md, only the values on the boundary determine the
process; Theorem 4.5 of [12] and its proof can be easily adapted to our situation.

The next result concerns expected occupation time at the boundary.

Theorem 3.3. Assume (Al) - (A3); let 1 < a < 2. Then for s > 0, x € D,t >

J = 0. (3.5)

ejO

Proof: We consider only s = 0. Note that dD = {x G Md : Xi =0 for some i}. Let
H = {x e Md : minimi I < 1}. Let φ e C%(Md) be such that (i) 0 < φ{ ) < 1,

(ii) 3D = {φ = 1}, (iii) <p( ) = 0 on fί c and (iv) φ,φi,ψij are integrable.

For 0 < e < 1 define φe on iRrf by φ€(z) = φ(z/e). Note that
<pe, ^C j i, y?c,i:7 eCb(Md) Π L1(Md); also they are supported on eF C iί. Clearly

(3.6)

(3.7)

(3.8)

), for all z eMd.

Next define ge on iRd by

oo

g€(x)= / - — ^ c ( a ) / p(0,x;t,z)dt dz.

Md o

By Theorem 2.6, Δa/2g€ = ^φe,0 < e < 1. We now claim t h a t

supe α |# e (» | ^ 0 as e j 0.
X

Putting s = t/ea in (3.7) and as \φe(-)\ < 1 we get

1

ί ίp(0,x;eOίs,z)dz ds

0 ]Rd

J \φe(z)\ J p(0,x;eas,
Md

= /i(x e)+ /2(x;e).

As p(01x;eas, •) is a probability density sup|/i(x;e)| < eα —>- 0. As φ is inte-

grable, by (2.11)

OO w

sup|/ 2(a;;c)| < €
a ί \φe(z)\ ί C (^-) ds dz

x Jd J \tasj

; / (^(-z)d2: = C ea / y?(z)d.= C

Md

0
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whence (3.8) follows.

We next show that

supeα |V#e(z)| -> 0 as e | 0. (3.9)
X

By Theorem 2.6, and putting s = t/eα gives

oo

—g e (x) = / -φ€ii(z) / p(0,x;eαs,z)ds dz

Md 0

OO

= / ~ψi(-j- I p(0,x;eαs,z)ds dz.

Md 0

Since ψi is integrable for 1 < i < d, an argument similar to the derivation of
(3.8) gives

supeα|V<?e(x)| < C e*-1 -> 0 as e | 0

because α > 1; this proves (3.9).

Now applying Ito's formula to eage(Z^x\-)), denoting Z^x\-) by Z( ), y(°'^( )
by y( ) and taking expectations we get

t

E[eαge(Z(t)) - eαge(x)\ = E J φe(Z(r))dr

0
t

+E ί{R(u,Y(u-),Z(u-))eαVge(Z(u)),dY(u)). (3.10)

o

By (3.8) l.h.s. of (3.10) tends to zero as e —> 0. As R is bounded, Proposition
3.2 and (3.9) imply that the last term in (3.10) goes to zero as e —> 0. Finally,
as \φe{ )\ < 1, (3.6) and (3.10) now imply (3.5). Π

Remark 3.4. A function φ as indicated in the proof of the preceding theorem
can, for example, be obtained as follows. Let H\ be a closed set with smooth
boundary such that 3D C Int {Hi) C Hλ C Int (H),eHι C Hλ for 0 < e <
l,λd(#i) < oo where λ^ denotes the ̂ -dimensional Lebesgue measure. Take
φ(z) = 0, z £ H and

φ(z) = eexp

{
(/? can be extended as required. •

Using Theorem 3.3 we now improve on it!

Theorem 3.5. Assume (Al) - (A3), 1 < α < 2. Then for s > 0,x G D,t > s

^ \ 0. (3.11)
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Proof: Let ζ(z) = Kexp j - (\ + .. + JΣ)\, where K > 2

1 0 , \r\ > 1

For e > 0 define fe(z) = h{ζ(z/e)),z G Md. Clearly /e G C%(Md) and
dfe(z)/dzi — 0 for any z G 9D, 1 < i < d. It is not difficult to see that

f e ( ) d D ( ) , z e M d (3.12)
e|0

(for z £ dD note that zι > c for all i for some c > 0; hence ζ(z/e) > 1 for all
small e). Next, an argument as in Lemma 2.1 gives for e > 0

for suitable constants C\, C2 -

Now we claim that for z G D\dD,

^ 0 a s e | 0 . (3.14)

Indeed let z £ dD; there exist r 0 > 0, c > 0 such that (^ + ^ ) > c, 1 < i < d for
|ξ| < r0. Choose e0 > 0 so that for all e < e0, ζ((z+ξ)/e) > K exp{-de2/c2} > 1
for \ξ\ < ro. Therefore fe(z + ζ) = 0 = fe(z) for all \ζ\ < ro?€ < eo and hence

Since i|pτ^l(r0,oo)(ICI) is integrable and λd(dD) = 0, by (3.12), (3.15) now the
claim (3.14) follows.

To prove the theorem we consider only the case s — 0. Denote Z^0?:r^( )
by Z( ), Y"( ). We want to prove that for x G D, t > 0,

limE

"0

ί Aa^fe(Z(r))dr = 0. (3.16)

0

By Theorem 3.3 and (3.13) for each e > 0,

t

EjldD(Z(r))A^2fe(Z(r))dr = 0. (3.17)
0

For c > 0, put Dc = (2c, oc)d. In view of (3.17), to prove (3.16) it is enough to
prove that

t

[lDc(Z(u))Aa/2fe(Z(u))du = 0 (3.18)
J
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for any fixed c > 0. If z G Dc, \ξ\ < c note that Zi + ξi > c,l < i < d. So one
can choose e0 > 0 such that fe(z + £) = 0 for all |£| < c, z G D c , e < e0. Hence
for any e < e0

The required assertion (3.18) and hence (3.16) now follows by (3.14) and dom-
inated convergence theorem.

Now to prove (3.11) (with s = 0), first consider the case x 0 3D. Since
dfe(-)/dzi = 0 on 3D, and Y(-) can increase only when Z(-) G cλD, by Ito's
formula

0

By (3.12), (3.16) letting e | 0 in the above we get (3.11).

Next let x G dD; for c> 0 let η = η{

c

x) = inf{r > 0 : Z(r) G Dc}. By strong
Markov property and the preceding case

E[l[Oίt](η)ldD(Z(t))]=O.

Note that {ηc < t} T Ω (modulo null set) as c j 0; otherwise we will get a
contradiction to Theorem 3.3. Letting c J, 0 in the above we get the required
conclusion. This completes the proof. D

Note: It may be interesting to compare the proofs of Theorems 3.3, 3.5 with
those of their analogues for reflected Brownian motion given in [6].

I n t h e f o l l o w i n g V 2 p ( r , y\ t, z) = V 2 ^ ( r , - ; t , z ) , Δ%/2p(r, y ; t, z) = A^/2p(r, ;t,z)
denote respectively the operators V, Δ α / 2 applied as function of y-variables.
Our main result is

Theorem 3.6. Assume (Al) - (A3); let 1 < a < 2. For 0 < s <t < oc,x e
D,z e D define

pR(s,x;t,z) = p(s,x;t,z)
t

+E f(R(u,Y(u-),Z(u-))\72p(u,Z(u);t,z),dY(u)) (3.19)

where Y(-) = y( β ' *>( . ) ,Z( ) = Z ^ ) ( ). For 0 < s < t,x G D, z G <9L> ίαA e

p Λ ( s , x\ t, z) = 0. Then (i) pR is continuous on {0 < s < t < oo, x G D,z G i^}7

zί Z5 α/so differntiαble in (t, z ) ; (zzj /or an?/ Borel set A C D,s < t:x E D

eA)= fpR(s,x;t,z)dz. (3.20)

In case R is independent of y-υariables, pR is the transition probability density
function of the Markov process Z(-). •
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We need a lemma

Lemma 3.7. Hypotheses and notation as in the Proposition 3.2. If
(sn, xn) —» (s, x) then for a.a. ω, for T > s

υar(Y^'x"\;ω)-γ(s'x\;ω);[s,T}) - 0

sup \Z^'x"\t,ω)-Z(s'x\t,ω)\ -+ 0.
s<t<T

Proof: Denote ZW( ) = £(*-*«)(•), y(™)(.) = F ( β n > X n ) ( ).^( ) = Z ^ O ,
F(.) = y(«>χ)(.). We first consider the case sn < s for all n. Clearly Z^(t,ω),
γ(n\t,ω),t > s is the solution to the Skorokhod problem corresponding to
Z(-n'*(s,ω) + B( ,ω) - B(s,ω). For any T > s note that

var ([B( ,ω) - B(s,ω) + Z^\s,ω)] - [B( ,ω) - B(s,ω)+x}; [s,T])

For any ω such that B( ,ω) is continuous at s we have xn + 5(s, ω) — B(sn, ω)
x. Boundedness of R and (3.4) imply

s

ί R(u, yw (w-), 0 as n —> oo.

Thus |Z^n^(s,α;) — x| —• 0, and hence the result follows by Proposition 3.9 of

[11]. •

Next let sn > s for all n. For any n, Z(t,ω), Y(t,ω), t > sn is the solution to
the Skorokhod problem corresponding to Z(sn,ω) + B( ,ω) — B(sn,ω). Clearly

var ([xn + B(-,ω) - B(sn,ω)} - [Z(sn,ω) + B(-,ω) - B(sn,ω)])\ [sn,T\)

= \Z(sn,ω)-xn.

So by the arguments as in [11]

vai(γW(.,ω)-Y(.,ω);[sn,T\) < C\Z(sn,ω) - xn\

sup \Z^n\t,ω)-Z(t,ω)\ < C\Z(sn,ω) - xn\.
sn<t<T

Note that for s < t < sn we may take Z^n\t,ω) = xn,Y(n\t,ω) = 0. Clearly
var (y( ,α;); [s, sn]), sup \xn — Z(t,ω)\, \Z(sn,ω) — xn\ all tend to 0 as sn -^ s

s<t<sn

by right continuity. The required conclusion is now immediate.

Proof of Theorem 3.6: Since dY(s'x\ ) can charge only when Z^x\-) G dD
and d(z,dD) > 0 for z 0 dD, well definedness of (3.19) follows from (2.12) and
Proposition 3.2.

Assertion (i) now follows from properties of p (viz. (2.11), (2.12), Proposition
2.4), boundedness and continuity of R and Lemma 3.7.

To prove assertion (ii), in view of Theorem 3.5, it is enough to establish (3.20)
when A C D.
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Fix t > s; let e > 0. Apply Ito's formula to p(r, Z^s^x\r)\ t,z),s < r < (t - e)
corresponding to the semimartingale Z^s'x\-) and use Theorem 2.5 to get

p(t-e,Z(t-e);t,z) = p(s,x;t,z)
t-e

+ J {R(r,Y(r-),Z(r-))V2p(r,Z(r);t,z),dY(r))
S

+ a stochastic integral. (3.21)

Let / be a continuous function with compact support K C D. By (3.21) for
any e > 0

E J f(z)p(t - e, Z(t - e); ί, z)dz = J f(z)p(s, χ t, z)dz
D D

t-e

+Ejf(z) J (R(r,Y(r-),Z(r-))V2p(r,Z(r);t,z)1dY(r))dz (3.22)
D s

For any ω, note that p(t - c,Z(t — e,ω);t,z)dz => δz{t-,ω)(dz) as e | 0. And
since P(Z(t) φ Z(t-)) = 0 it now follows that

lim[l.h.s. of (3.22)] = E[f{Z^x\t))]. (3.23)
ej.0

As d(K,ΘD) > 0, by (2.12), Proposition 3.2 and boundedness of /(•),#(•)

lim[r.h.s. of (3.22)] = ( f{z)pR(s,x\t,z)dz. (3.24)
e|0 J

D

Thus

J f(z)pR{s, x t, z)dz = E[f(Z^ (*))] (3.25)
D

for any continuous function / with compact support in D.

Next for any open set F C D, let {fn} be a sequence of continuous functions
with compact support in D such that fn f lp pointwise. Clearly

lim E[fn(Z^x\t))} = E[lF{Z^*\t))]. (3.26)
n—> oo

Taking expectation in (3.21) and letting e [ 0 we get

pR(s,x]t,z) = lim E[p(t - e, Z(t - e);t, z)} > 0.

Therefore by monotone convergence theorem

lim (fn(z)pR(s,χ t,z)dz= [lF(z)pR(s,x;t,z)dz. (3.27)

n-^oo J JJ
D D

Now (3.25), (3.26), (3.27) imply that (3.20) holds for any open F C D, and

hence for any Borel set A C D.
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Finally, the last assertion is immediate from (ii); this completes the proof. •

We conclude with the following questions.

1. Can (x, z) ι-> pR(s, x; £, z) given by (3.19) be extended continuously to D x DΊ

2. Is pR(s, x\ t,z)>0 for s <t,x,z G DΊ

3. When is pR symmetric in x,zl
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