Transition Density of a Reflected Symmetric Stable Lévy Process in an Orthant

Amites Dasgupta and S. Ramasubramanian
Indian Statistical Institute

Abstract

Let $\left\{Z^{(s, x)}(t): t \geq s\right\}$ denote the reflected symmetric α-stable Lévy process in an orthant D (with nonconstant reflection field), starting at (s, x). For $1<\alpha<2,0 \leq s<t, x \in \bar{D}$ it is shown that $Z^{(s, x)}(t)$ has a probability density function which is continuous away from the boundary, and a representation given.

1 Introduction

Due to their applications in diverse fields, symmetric stable Lévy processes have been studied recently by several authors; see [4], [5] and the references therein. In the meantime reflected Lévy processes have been advocated as heavy traffic models for certain queueing/stochastic networks; see [14]. The natural way of defining a reflected/regulated Lévy process is via the Skorokhod problem as in [9], [3], [11], [1].

In this article we consider reflected/regulated symmetric α-stable Lévy process in an orthant, show that transition probability density function exists when $1<\alpha<2$ and is continuous away from the boundary; the reflection field can have fairly general time-space dependencies as in [11]. It may be emphasized that unlike the case of reflected diffusions (see [10]) powerful tools/methods of PDE theory are not available to us. To achieve our purpose we use an analogue of a representation for transition density (of a reflected diffusion) given in [2].

Section 2 concerns preliminary results on symmetric α-stable Lévy process in \mathbb{R}^{d}, its transition probability density function and the potential operator. In Section 3, corresponding reflected process with time-space dependent reflection field at the boundary is studied. A major effort goes into proving that the distribution of the reflected process at any given time $t>0$ gives zero probability to the boundary.

2 Symmetric stable Lévy process

Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}, P\right)$ be a filtered probability space, $d \geq 2,0<\alpha<2$. Let $\{B(t): t \geq 0\}$ be an \mathcal{F}_{t}-adapted d-dimensional symmetric α-stable Lévy process. That is, $\{B(t)\}$ is an \mathbb{R}^{d}-valued homogeneous Lévy process (with independent increments) with r.c.l.l. sample paths; it is roation invariant and

$$
\begin{equation*}
E[\exp \{i\langle u, B(t)-x\rangle\} \mid B(0)=x]=\exp \left\{-t|u|^{\alpha}\right\} \tag{2.1}
\end{equation*}
$$

for $t \geq 0, u \in \mathbb{R}^{d}, x \in \mathbb{R}^{d}$. It is a pure jump strong Markov process. Using LévyIto theorem and Ito's formula, it can be shown that the (weak) infinitesimal generator of $B(\cdot)$ is given by the fractional Laplacian

$$
\begin{equation*}
\Delta^{\alpha / 2} f(x)=\lim _{r \downarrow 0} C(d, \alpha) \int_{|\xi|>r} \frac{f(x+\xi)-f(x)}{|\xi|^{d+\alpha}} d \xi \tag{2.2}
\end{equation*}
$$

whenever the right side makes sense, where $C(d, \alpha)=\Gamma\left(\frac{d+\alpha}{2}\right) /\left[2^{-\alpha} \pi^{d / 2}\left|\Gamma\left(\frac{\alpha}{2}\right)\right|\right]$; the measure $\nu(d \xi)=C(d, \alpha) \frac{1}{|\xi|^{d+\alpha}} d \xi$ is called the Lévy measure of $B(\cdot)$. Also, for any $t>0$,

$$
\begin{equation*}
P(B(t) \neq B(t-))=0 \tag{2.3}
\end{equation*}
$$

See [4], [5], [7], [8] for more information.
For a function g on $\mathbb{R}^{d}, g_{i}(x)=\partial g(x) / \partial x_{i}, g_{i j}(x)=\partial^{2} g(x) / \partial x_{i} \partial x_{j}, 1 \leq i, j \leq d$.
Lemma 2.1. If $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ then $\Delta^{\alpha / 2} f \in C_{b}\left(\mathbb{R}^{d}\right)$.

Proof: For $0<r<s, \Delta_{r, s}^{\alpha / 2}$ is defined by

$$
\begin{equation*}
\Delta_{r, s}^{\alpha / 2} \psi(z)=C(d, \alpha) \int_{r<|\xi|<s} \frac{\psi(z+\xi)-\psi(z)}{|\xi|^{d+\alpha}} d \xi \tag{2.4}
\end{equation*}
$$

Let $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$. For any $x \in \mathbb{R}^{d}$ observe that

$$
\begin{equation*}
\frac{|f(x+\xi)-f(x)|}{|\xi|^{d+\alpha}} 1_{(1, \infty)}(|\xi|) \leq 2\|f\|_{\infty} \frac{1}{|\xi|^{d+\alpha}} 1_{(1, \infty)}(|\xi|) \tag{2.5}
\end{equation*}
$$

and that as $\alpha>0$

$$
\begin{equation*}
\int_{|\xi|>1} \frac{1}{|\xi|^{d+\alpha}} d \xi=C \int_{1}^{\infty} r^{-(\alpha+1)} d r<\infty \tag{2.6}
\end{equation*}
$$

So continuity of f and dominated convergence theorem imply that $\Delta_{1, \infty}^{\alpha / 2} f$ is well defined, bounded and continuous. Next, Taylor expansion gives

$$
\begin{equation*}
f(x+\xi)-f(x)=\sum_{i=1}^{d} f_{i}(x) \xi_{i}+\frac{1}{2} \sum_{i, j=1}^{d} f_{i j}(y) \xi_{i} \xi_{j} \tag{2.7}
\end{equation*}
$$

where y is point on the line segment joining x and $x+\xi$. Since $\xi \mapsto \xi_{i}$ is an odd function for each i

$$
\begin{equation*}
\int_{r<|\xi|<1} \xi_{i} \frac{1}{|\xi|^{d+\alpha}} d \xi=0 . \tag{2.8}
\end{equation*}
$$

Note that $\sum_{i, j=1}^{d} f_{i j}(y) \xi_{i} \xi_{j}=O\left(|\xi|^{2}\right)$ and

$$
\begin{equation*}
\int_{0<|\xi|<1}|\xi|^{2} \frac{1}{|\xi|^{d+\alpha}} d \xi=C \int_{0}^{1} r^{-\alpha+1} d r<\infty \tag{2.9}
\end{equation*}
$$

as $\alpha>2$. Since $f_{i j}(\cdot) \in C_{b}\left(\mathbb{R}^{d}\right)$ it is now easily seen that $\lim _{r \downarrow 0} \Delta_{r, 1}^{\alpha / 2} f$ is well defined, bounded and continuous. Since

$$
\begin{equation*}
\Delta^{\alpha / 2} f(x)=\Delta_{1, \infty}^{\alpha / 2} f(x)+\lim _{r \downarrow 0} \Delta_{r, 1}^{\alpha / 2} f(x) \tag{2.10}
\end{equation*}
$$

the lemma now follows.
It is known that the process $B(\cdot)$ has a transition density function; we now give a representation for it.

Theorem 2.2. The transition probability density function of $B(\cdot)$ is given by

$$
\begin{align*}
& p(s, x ; t, z) \\
= & (4 \pi)^{-d / 2}(t-s)^{-d / \alpha} \int_{0}^{\infty} \frac{g(r)}{r^{d}} \exp \left\{-\frac{1}{4(t-s)^{2 / \alpha}} \frac{1}{r^{2}}|z-x|^{2}\right\} d r \tag{2.11}
\end{align*}
$$

for $0 \leq s<t<\infty, x, z \in \mathbb{R}^{d}$, where $g(\cdot)$ is the density function of the square root of an $\frac{\alpha}{2}$-stable positive random variable.

Proof: By homogeneity enough to consider $s=0, x=0$. Let $t>0$. By (2.1) and Proposition 2.5.5 (on pp. 79-80) of [13] it follows that $B(t)=$ $\left(B_{1}(t), \ldots, B_{d}(t)\right)$ is sub-gaussian and that there exist independent one-dimensional random variables S, U_{1}, \ldots, U_{d} such that $U_{i} \sim N\left(0,2 t^{2 / \alpha}\right), 1 \leq i \leq d, S$ is $\frac{\alpha}{2}$ stable positive random variable and $\left(B_{1}(t), \ldots, B_{d}(t)\right) \sim\left(S^{\frac{1}{2}} U_{1}, S^{\frac{1}{2}} U_{2}, \ldots, S^{\frac{1}{2}} U_{d}\right)$. Denoting by $g(\cdot)$ the density of $S^{1 / 2}$, the joint density of $\left(U_{1}, \ldots, U_{d}, S^{1 / 2}\right)$ is given by

$$
h\left(\xi_{1}, \ldots, \xi_{d}, r\right)=\left(\frac{1}{4 \pi}\right)^{d / 2}\left(\frac{1}{t}\right)^{d / \alpha} g(r) \exp \left\{-\frac{1}{4 t^{2 / \alpha}} \sum_{i=1}^{d} \xi_{i}^{2}\right\}
$$

Using the invertible transformation $\left(\xi_{1}, \ldots, \xi_{d}, r\right) \mapsto\left(r \xi_{1}, \ldots, r \xi_{d}, r\right)$ on $\mathbb{R}^{d} \times(0, \infty)$ the joint density of $\left(B_{1}(t), \ldots, B_{d}(t), S^{1 / 2}\right)$ is given by

$$
\begin{aligned}
\tilde{h}\left(y_{1}, \ldots, y_{d}, r\right) & =\frac{1}{r^{d}} h\left(\frac{1}{r} y_{1}, \ldots, \frac{1}{r} y_{d}, r\right) \\
& =\left(\frac{1}{4 \pi}\right)^{d / 2}\left(\frac{1}{t}\right)^{d / \alpha} \frac{1}{r^{d}} g(r) \exp \left\{-\frac{1}{4 t^{2 / \alpha}} \frac{1}{r^{2}} \sum_{i=1}^{d} y_{i}^{2}\right\}
\end{aligned}
$$

Now integrating w.r.t. r we get (2.11).
Remark 2.3. From the preceding theorem it follows that $\int_{0}^{\infty} \frac{1}{r^{k}} g(r) d r<\infty$ for $k=2,3, \ldots$ Indeed note that $g(\cdot)$ depends only on α; so if we consider k dimensional symmetric α-stable Lévy process then the transition density will be given by (2.11) with d replaced by k; and as the density is well defined at $x=z$ the claim follows.

Proposition 2.4. Denote $p_{0}(s, x ; t, z)=\partial p(s, x ; t, z) / \partial s, \quad p_{i}(s, x ; t, z)$ $=\partial p(s, x ; t, z) / \partial x_{i}, \quad p_{i j}(s, x ; t, z)=\partial^{2} p(s, x ; t, z) / \partial x_{i} \partial x_{j}, 1 \leq i, j \leq d$.
(i) Fix $t>0, z \in \mathbb{R}^{d}$. Let $t_{0}<t$; then $p, p_{0}, p_{i}, p_{i j}, 1 \leq i, j \leq d$ are bounded continuous functions of (s, x) on $\left[0, t_{0}\right] \times \mathbb{R}^{d}$.
(ii) For any $t>0, \delta>0$

$$
\begin{equation*}
\sup \left\{\left|\nabla_{x} p(s, x ; t, z)\right|: 0 \leq s<t,|z-x| \geq \delta\right\} \leq K(d, \delta) \tag{2.12}
\end{equation*}
$$

where $K(d, \delta)$ is a constant depending only on d, δ and ∇_{x} denotes gradient w.r.t. x-variables.

Proof: (i) Since $y e^{-y^{2}}, y^{2} e^{-y^{2}}$ are bounded, using Remark 2.3 and dominated convergence theorem, the assertion can be proved by differentiating w.r.t. s, x under the integral in (2.11).
(ii) Since $y^{d+2} e^{-y^{2}}$ is bounded, differentiating under the integral in (2.11) we get for all $0 \leq s<t,|z-x| \geq \delta$

$$
\begin{aligned}
& \left|\nabla_{x} p(s, x ; t, z)\right| \\
\leq & K(d) \int_{0}^{\infty} g(r)\left(\frac{2}{|z-x|}\right)^{d+1}\left(\frac{|z-x|}{2 r(t-s)^{1 / \alpha}}\right)^{d+2} \exp \left\{-\frac{|z-x|^{2}}{4 r^{2}(t-s)^{2 / \alpha}}\right\} d r \\
\leq & \hat{K}(d)\left(\frac{2}{\delta}\right)^{d+1} \int_{0}^{\infty} g(r) d r=K(d, \delta) .
\end{aligned}
$$

The following result indicates a connection between the transition density and the generator; though it is not unexpected, a proof is given for the sake of completeness.
Theorem 2.5. For fixed $t>0, z \in \mathbb{R}^{d}$ the function $(s, x) \mapsto p(s, x ; t, z)$ satisfies the Kolmogorov backward equation

$$
\begin{equation*}
p_{0}(s, x ; t, z)+\Delta_{x}^{\alpha / 2} p(s, x ; t, z)=0, s<t, x \in \mathbb{R}^{d} \tag{2.13}
\end{equation*}
$$

where p_{0} is as in the preceding proposition and x in $\Delta_{x}^{\alpha / 2}$ signifies that $\Delta^{\alpha / 2}$ is applied to p as a function of x.

Proof: By the preceding proposition and Lemma $2.1 \Delta_{x}^{\alpha / 2} p(s, x ; t, z)$ is a bounded continuous function. Put $u(s, x)=p(s, x ; t, z), s<t, x \in \mathbb{R}^{d}$. Using Ito's formula (see [7]) for $0 \leq s<c<t, x \in \mathbb{R}^{d}$

$$
E\left\{u(c, B(c))-u(s, B(s))-\int_{s}^{c}\left[u_{0}(r, B(r))+\Delta^{\alpha / 2} u(r, B(r))\right] d r \mid B(s)=x\right\}=0
$$

That is

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} p(c, y ; t, z) p(s, x ; c, y) d y-p(s, x ; t, z) \\
= & \int_{s}^{c} \int_{\mathbb{R}^{d}}^{c}\left[p_{0}(r, y ; t, z)+\Delta_{y}^{\alpha / 2} p(r, y ; t, z)\right] p(s, x ; r, y) d y d r .
\end{aligned}
$$

By Chapman-Kolmogorov equation, l.h.s. of the above is zero. As the above holds for all $c>s$ and the quantity within double brackets is bounded continuous in (r, y), by Feller continuity one can obtain (2.13) from the above letting $c \downarrow s$.

We next look at the 0-resolvent (or potential operator) associated with the process $B(\cdot)$. For a measurable function φ on $\mathbb{R}^{d}, x \in \mathbb{R}^{d}$ define

$$
\begin{equation*}
G \varphi(x)=\int_{\mathbb{R}^{d}} \varphi(z) \int_{0}^{\infty} p(0, x ; t, z) d t d z=\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi(z) p(0, x ; t, z) d z d t \tag{2.14}
\end{equation*}
$$

whenever the r.h.s. makes sense. Since $0<\alpha<2 \leq d$, using (2.11) it is not difficult to see that

$$
\begin{equation*}
\int_{0}^{\infty} p(0, x ; t, z)=C \frac{1}{|z-x|^{d-\alpha}}, z \neq x \tag{2.15}
\end{equation*}
$$

which is the so called Riesz kernel.
Theorem 2.6. Let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ and $\varphi, \varphi_{i}, \varphi_{i j}, 1 \leq i, j \leq d$ be integrable w.r.t. the d-dimensional Lebesgue measure. Then (a) $G \varphi \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$, (b) $(G \varphi)_{i}(x)=$ $G \varphi_{i}(x), \quad(G \varphi)_{i j}(x)=G \varphi_{i j}(x), \quad x \in \mathbb{R}^{d}, 1 \leq i, j \leq d$ (c) $\Delta^{\alpha / 2} G \varphi(x)=-\varphi(x), x \in \mathbb{R}^{d}$.

We need a lemma
Lemma 2.7. If $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$ then $G f$ is well defined, bounded and continuous.

Proof: Let $\left\{T_{t}\right\}$ be the contraction semigroup associated with $B(\cdot)$. Observe that

$$
\begin{equation*}
G f(x)=\int_{0}^{1} T_{t} f(x) d t+\int_{1}^{\infty} \int_{\mathbb{R}^{d}} f(z) p(0, x ; t, z) d z d t \tag{2.16}
\end{equation*}
$$

Since $T_{t} f$ is continuous for each $t>0$ and $\left|T_{t} f(\cdot)\right| \leq\|f\|_{\infty}$ it is clear that the first term on r.h.s. is bounded and continuous. By (2.11)

$$
\left|f(z) p(0, x ; t, z) 1_{(1, \infty)}(t)\right| \leq K t^{-d / \alpha}|f(z)| 1_{(1, \infty)}(t)
$$

which is integrable as $0<\alpha<2 \leq d$. So continuity of p in x now implies that the second term on r.h.s. of (2.16) is bounded and continuous.

Proof of Theorem 2.6: By Lemma 2.6 we get $G \varphi, G \varphi_{i}, G \varphi_{i j}$ are bounded continuous. A simple change of variables yields

$$
\begin{aligned}
\frac{1}{h}\left[G \varphi\left(x+h e_{i}\right)-G \varphi(x)\right] & =\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \frac{\varphi\left(z+h e_{i}\right)-\varphi(z)}{h} p(0, x ; t, z) d z d t \\
& \rightarrow \int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi_{i}(z) p(0, x ; t, z) d z d t
\end{aligned}
$$

by dominated convergence theroem; thus $(G \varphi)_{i}(x)=G \varphi_{i}(x)$. An analogous argument gives $(G \varphi)_{i j}(x)=G \varphi_{i j}(x)$ for all x. By Lemma 2.1 note that $\Delta^{\alpha / 2} G \varphi$ is well defined, bounded and continuous. To prove the last assertion, by ChapmanKolmogorov equation we get

$$
\begin{aligned}
& \Delta^{\alpha / 2} G \varphi(x)=\lim _{t \downarrow 0} \frac{T_{t} G \varphi(x)-G \varphi(x)}{t} \\
= & \lim _{t \downarrow 0} \frac{1}{t}\left[\int_{0}^{\infty} \int_{\mathbb{R}^{d}}^{\infty} \varphi(z) p(0, x ; t+s, z) d z d s-\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi(z) p(0 ; x ; s, z) d z d s\right] \\
= & \lim _{t \downarrow 0} \frac{1}{t}\left[-\int_{0}^{t} \int_{\mathbb{R}^{d}} \varphi(z) p(0, x ; s, z) d z d s\right]=-\varphi(x)
\end{aligned}
$$

for each $x \in \mathbb{R}^{d}$, completing the proof.

3 Reflected process

Let $D=\left\{x \in \mathbb{R}^{d}: x_{i}>0,1 \leq i \leq d\right\}$ be the d-dimensional positive orthant. The reflection field is a function $R:[0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$ where $M_{d}(\mathbb{R})$ is the space of $(d \times d)$ matrices with real entries. We write $R(t, y, z)=\left(r_{i j}(t, y, z)\right)$. We assume the following

Assumptions (A1) The function ($y, z) \mapsto r_{i j}(t, y, z)$ is Lipschitz continuous, uniformly in t, for $1 \leq i, j \leq d$.
(A2) For $i \neq j$, there exist $v_{i j}$ such that $\left|r_{i j}(t, y, z)\right| \leq v_{i j}$ for all t, y, z. Set $V=\left(\left(v_{i j}\right)\right)$ with $v_{i i}=0$. We assume spectral radius of $V=\sigma(V)<1$.
(A3) Take $r_{i i}(\cdot, \cdot, \cdot) \equiv 1,1 \leq i \leq d$.
(A2) is a uniform Harrison-Reiman condition that has proved useful in queueing networks; (A3) is just a suitable normalization.

Let $s \geq 0, x \in \bar{D}$. The Skorokhod problem in \bar{D} corresponding to $\{B(t): t \geq s\}$ and R consists in finding \mathcal{F}_{t}-adapted r.c.l.l. processes $Y^{(s, x)}(t), Z^{(s, x)}(t), t \geq s$ such that
(i) $Z^{(s, x)}(t) \in \bar{D}$ for all $t \geq s$;
(ii) $Y_{i}^{(s, x)}(s)=0, Y_{i}^{(s, x)}(\cdot)$ is nondecreasing, $1 \leq i \leq d$;
(iii) $Y_{i}^{(s, x)}(\cdot)$ can increase only when $Z_{i}^{(s, x)}(\cdot)=0$; that is, for $1 \leq i \leq d, t \geq s$,

$$
\begin{equation*}
Y_{i}^{(s, x)}(t)=\int_{s}^{t} 1_{\{0\}}\left(Z_{i}^{(s, x)}(r)\right) d Y_{i}^{(s, x)}(r), \text { a.s. } \tag{3.1}
\end{equation*}
$$

(iv) Skorokhod equation holds, viz. for $1 \leq i \leq d, t \geq s$

$$
\begin{align*}
Z_{i}^{(s, x)}(t)= & x_{i}+B_{i}(t)-B_{i}(s)+Y_{i}^{(s, x)}(t) \\
& +\sum_{j \neq i} \int_{s}^{t} r_{i j}\left(u, Y^{(s, x)}(u-), Z^{(s, x)}(u-)\right) d Y_{j}^{(s, x)}(u) \tag{3.2}
\end{align*}
$$

or in vector notation

$$
\begin{equation*}
Z^{(s, x)}(t)=x+B(t)-B(s)+\int_{s}^{t} R\left(u, Y^{(s, x)}(u-), Z^{(s, x)}(u-)\right) d Y^{(s, x)}(u) \tag{3.3}
\end{equation*}
$$

Solving the deterministic Skorokhod problem path by path one can solve the above stochastic problem. Indeed the following result is given in [11].
Proposition 3.1. Assume (A1) - (A3). For each $s \geq 0, x \in \bar{D}$ there is a unique pair $Z^{(s, x)}(\cdot), Y^{(s, x)}(\cdot)$ solving the above problem; also

$$
\begin{equation*}
Y_{i}^{(s, x)}(t) \leq\left((I-V)^{-1} L^{(s, x)}\right)_{i}(t), \text { a.s. } \tag{3.4}
\end{equation*}
$$

for $t \geq s$ where $L^{(s, x)}(\cdot)$ is given by

$$
L_{i}^{(s, x)}(t)=\sup _{s \leq u \leq t} \max \left\{0,-\left[x_{i}+B_{i}(t)-B_{i}(s)\right]\right\}
$$

Moreover $\left\{\left(Z^{(s, x)}(t), Y^{(s, x)}(t)\right): t \geq s\right\}$ is an \mathcal{F}_{t}-adapted $\bar{D} \times \bar{D}$-valued Feller continuous strong Markov process. Any discontinuity of $Y^{(s, x)}(\cdot, \omega)$ or $Z^{(s, x)}(\cdot, \omega)$ has to be a discontinuity of $B(\cdot, \omega)$. If R is a function only of t, z then $\left\{Z^{(s, x)}(t)\right.$: $t \geq s\}$ is a \bar{D}-valued Feller continuous strong Markov process.

The z-part of the above viz. $\left\{Z^{(s, x)}(t): t \geq s\right\}$ may be called the reflected (or regulated) symmetric α-stable Lévy process.

Proposition 3.2. Assume (A1) - (A3) and let $1<\alpha<2$. Then $E\left[\operatorname{var}\left(Y^{(s, x)}(\cdot) ;[s, t]\right)\right]<\infty$ for all $t>s \geq 0, x \in \bar{D}$, where $\operatorname{var}(g(\cdot) ;[a, b])$ denotes the total variation of g over $[a, b]$.

Proof: As $Y_{i}^{(s, x)}(\cdot)$ is nondecreasing for each i it is enough to show that $\left.E \mid Y_{i}^{(s, x)} t\right) \mid$
$<\infty$; also we may take $s=0, x=0$. Since $\alpha>1$ note that $E\left|B_{i}(t)\right|^{\alpha^{\prime}}<\infty$ for all $1 \leq \alpha^{\prime}<\alpha$. As $B(\cdot)$ is symmetric note that it is a martingale. (3.4) of the preceding proposition implies

$$
E\left|Y_{i}^{(0,0)}(t)\right|^{\alpha^{\prime}} \leq C E\left[\sup _{0 \leq r \leq t}\left|B_{i}(r)\right|\right]^{\alpha^{\prime}} \leq \hat{C} E\left|B_{i}(t)\right|^{\alpha^{\prime}}<\infty
$$

by Doob's maximal inequality for any $1<\alpha^{\prime}<\alpha$. The required conclusion now follows.

Note: In the context of reflected processes, the reflection terms are usually specified only for z on the boundary. However, no matter how the reflection
field is extended to \bar{D} or \mathbb{R}^{d}, only the values on the boundary determine the process; Theorem 4.5 of [12] and its proof can be easily adapted to our situation.

The next result concerns expected occupation time at the boundary.
Theorem 3.3. Assume (A1)-(A3); let $1<\alpha<2$. Then for $s \geq 0, x \in \bar{D}, t>$ s

$$
\begin{equation*}
E\left[\int_{s}^{t} 1_{\partial D}\left(Z^{(s, x)}(r)\right) d r\right]=0 \tag{3.5}
\end{equation*}
$$

Proof: We consider only $s=0$. Note that $\partial D=\left\{x \in \mathbb{R}^{d}: x_{i}=0\right.$ for some $\left.i\right\}$. Let $H=\left\{x \in \mathbb{R}^{d}: \min _{i}\left|x_{i}\right| \leq 1\right\}$. Let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ be such that (i) $0 \leq \varphi(\cdot) \leq 1$, (ii) $\partial D=\{\varphi=1\}^{i}$, (iii) $\varphi(\cdot)=0$ on H^{c} and (iv) $\varphi, \varphi_{i}, \varphi_{i j}$ are integrable.

For $0<\epsilon \leq 1$ define φ_{ϵ} on \mathbb{R}^{d} by $\varphi_{\epsilon}(z)=\varphi(z / \epsilon)$. Note that $\varphi_{\epsilon}, \varphi_{\epsilon, i}, \varphi_{\epsilon, i j} \epsilon C_{b}\left(\mathbb{R}^{d}\right) \cap L^{1}\left(\mathbb{R}^{d}\right)$; also they are supported on $\epsilon H \subseteq H$. Clearly

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} \varphi_{\epsilon}(z)=1_{\partial D}(z), \text { for all } z \in \mathbb{R}^{d} \tag{3.6}
\end{equation*}
$$

Next define g_{ϵ} on \mathbb{R}^{d} by

$$
\begin{equation*}
g_{\epsilon}(x)=\int_{\mathbb{R}^{d}}-\frac{1}{\epsilon^{\alpha}} \varphi_{\epsilon}(x) \int_{0}^{\infty} p(0, x ; t, z) d t d z . \tag{3.7}
\end{equation*}
$$

By Theorem 2.6, $\Delta^{\alpha / 2} g_{\epsilon}=\frac{1}{\epsilon^{\alpha}} \varphi_{\epsilon}, 0<\epsilon \leq 1$. We now claim that

$$
\begin{equation*}
\sup _{x} \epsilon^{\alpha}\left|g_{\epsilon}(x)\right| \rightarrow 0 \text { as } \epsilon \downarrow 0 \tag{3.8}
\end{equation*}
$$

Putting $s=t / \epsilon^{\alpha}$ in (3.7) and as $\left|\varphi_{\epsilon}(\cdot)\right| \leq 1$ we get

$$
\begin{aligned}
\epsilon^{\alpha}\left|g_{\epsilon}(x)\right| \leq & \epsilon^{\alpha} \int_{0}^{1} \int_{\mathbb{R}^{d}} p\left(0, x ; \epsilon^{\alpha} s, z\right) d z d s \\
& +\epsilon^{\alpha} \int_{\mathbb{R}^{d}}\left|\varphi_{\epsilon}(z)\right| \int_{1}^{\infty} p\left(0, x ; \epsilon^{\alpha} s, z\right) d s d z \\
= & I_{1}(x ; \epsilon)+I_{2}(x ; \epsilon)
\end{aligned}
$$

As $p\left(0, x ; \epsilon^{\alpha} s, \cdot\right)$ is a probability density $\sup _{x}\left|I_{1}(x ; \epsilon)\right| \leq \epsilon^{\alpha} \rightarrow 0$. As φ is integrable, by (2.11)

$$
\begin{aligned}
\sup _{x}\left|I_{2}(x ; \epsilon)\right| & \leq \epsilon^{\alpha} \int_{\mathbb{R}^{d}}\left|\varphi_{\epsilon}(z)\right| \int_{1}^{\infty} C\left(\frac{1}{\epsilon^{\alpha} s}\right)^{d / \alpha} d s d z \\
& =C \epsilon^{\alpha-d} \int_{\mathbb{R}^{d}} \varphi\left(\frac{1}{\epsilon} z\right) d z=C \epsilon^{\alpha} \int_{\mathbb{R}^{d}} \varphi(z) d z \\
& =\hat{C} \epsilon^{\alpha} \rightarrow 0
\end{aligned}
$$

whence (3.8) follows.
We next show that

$$
\begin{equation*}
\sup _{x} \epsilon^{\alpha}\left|\nabla g_{\epsilon}(x)\right| \rightarrow 0 \text { as } \epsilon \downarrow 0 . \tag{3.9}
\end{equation*}
$$

By Theorem 2.6, and putting $s=t / \epsilon^{\alpha}$ gives

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} g_{\epsilon}(x) & =\int_{\mathbb{R}^{d}}-\varphi_{\epsilon, i}(z) \int_{0}^{\infty} p\left(0, x ; \epsilon^{\alpha} s, z\right) d s d z \\
& =\int_{\mathbb{R}^{d}}-\varphi_{i}\left(\frac{z}{\epsilon}\right) \frac{1}{\epsilon} \int_{0}^{\infty} p\left(0, x ; \epsilon^{\alpha} s, z\right) d s d z
\end{aligned}
$$

Since φ_{i} is integrable for $1 \leq i \leq d$, an argument similar to the derivation of (3.8) gives

$$
\sup _{x} \epsilon^{\alpha}\left|\nabla g_{\epsilon}(x)\right| \leq C \epsilon^{\alpha-1} \rightarrow 0 \text { as } \epsilon \downarrow 0
$$

because $\alpha>1$; this proves (3.9).
Now applying Ito's formula to $\epsilon^{\alpha} g_{\epsilon}\left(Z^{(0, x)}(\cdot)\right)$, denoting $Z^{(0, x)}(\cdot)$ by $Z(\cdot), Y^{(0, x)}(\cdot)$ by $Y(\cdot)$ and taking expectations we get

$$
\begin{align*}
& E\left[\epsilon^{\alpha} g_{\epsilon}(Z(t))-\epsilon^{\alpha} g_{\epsilon}(x)\right]=E \int_{0}^{t} \varphi_{\epsilon}(Z(r)) d r \\
& +E \int_{0}^{t}\left\langle R(u, Y(u-), Z(u-)) \epsilon^{\alpha} \nabla g_{\epsilon}(Z(u)), d Y(u)\right\rangle . \tag{3.10}
\end{align*}
$$

By (3.8) l.h.s. of (3.10) tends to zero as $\epsilon \rightarrow 0$. As R is bounded, Proposition 3.2 and (3.9) imply that the last term in (3.10) goes to zero as $\epsilon \rightarrow 0$. Finally, as $\left|\varphi_{\epsilon}(\cdot)\right| \leq 1,(3.6)$ and (3.10) now imply (3.5).
Remark 3.4. A function φ as indicated in the proof of the preceding theorem can, for example, be obtained as follows. Let H_{1} be a closed set with smooth boundary such that $\partial D \subset \operatorname{Int}\left(H_{1}\right) \subset H_{1} \subset \operatorname{Int}(H), \epsilon H_{1} \subset H_{1}$ for $0 \leq \epsilon \leq$ $1, \lambda_{d}\left(H_{1}\right)<\infty$ where λ_{d} denotes the d-dimensional Lebesgue measure. Take $\varphi(z)=0, z \notin H$ and

$$
\varphi(z)=e \exp \left\{-\frac{1}{1-\exp \left[-\left(\frac{1}{z_{1}^{2}}+\ldots+\frac{1}{z_{d}^{2}}\right)\right]}\right\}, z \in H_{1}
$$

φ can be extended as required.

Using Theorem 3.3 we now improve on it!
Theorem 3.5. Assume (A1) - (A3), $1<\alpha<2$. Then for $s \geq 0, x \in \bar{D}, t>s$

$$
\begin{equation*}
P\left(Z^{(s, x)}(t) \in \partial D\right)=0 \tag{3.11}
\end{equation*}
$$

Proof: Let $\zeta(z)=K \exp \left\{-\left(\frac{1}{z_{1}^{2}}+\ldots+\frac{1}{z_{d}^{2}}\right)\right\}$, where $K>2$

$$
h(r)= \begin{cases}e \exp \left\{-\frac{1}{1-r^{2}}\right\} & , \quad|r| \leq 1 \\ 0 & , \quad|r| \geq 1\end{cases}
$$

For $\epsilon>0$ define $f_{\epsilon}(z)=h(\zeta(z / \epsilon)), z \in \mathbb{R}^{d}$. Clearly $f_{\epsilon} \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ and $\partial f_{\epsilon}(z) / \partial z_{i}=0$ for any $z \in \partial D, 1 \leq i \leq d$. It is not difficult to see that

$$
\begin{equation*}
\lim _{\epsilon \downharpoonright 0} f_{\epsilon}(z)=1_{\partial D}(z), z \in \mathbb{R}^{d} \tag{3.12}
\end{equation*}
$$

(for $z \notin \partial D$ note that $z_{i}>c$ for all i for some $c>0$; hence $\zeta(z / \epsilon)>1$ for all small ϵ). Next, an argument as in Lemma 2.1 gives for $\epsilon>0$

$$
\begin{equation*}
\sup _{z}\left|\Delta^{\alpha / 2} f_{\epsilon}(z)\right| \leq \frac{C_{1}}{\alpha}+\frac{C_{2}}{(2-\alpha)} \frac{1}{\epsilon^{2}} \tag{3.13}
\end{equation*}
$$

for suitable constants C_{1}, C_{2}.
Now we claim that for $z \in \bar{D} \backslash \partial D$,

$$
\begin{equation*}
\Delta^{\alpha / 2} f_{\epsilon}(z) \rightarrow 0 \text { as } \epsilon \downarrow 0 \tag{3.14}
\end{equation*}
$$

Indeed let $z \notin \partial D$; there exist $r_{0}>0, c>0$ such that $\left(z_{i}+\xi_{i}\right)>c, 1 \leq i \leq d$ for $|\xi|<r_{0}$. Choose $\epsilon_{0}>0$ so that for all $\epsilon<\epsilon_{0}, \zeta((z+\xi) / \epsilon)>K \exp \left\{-d \epsilon^{2} / c^{2}\right\}>1$ for $|\xi|<r_{0}$. Therefore $f_{\epsilon}(z+\xi)=0=f_{\epsilon}(z)$ for all $|\xi|<r_{0}, \epsilon<\epsilon_{0}$ and hence

$$
\begin{equation*}
\Delta^{\alpha / 2} f_{\epsilon}(z)=\int_{|\xi|>r_{0}} f_{\epsilon}(z+\xi) \frac{1}{|\xi|^{d+\alpha}} d \xi \tag{3.15}
\end{equation*}
$$

Since $\frac{1}{|\xi|^{d+\alpha}} 1_{\left(r_{0}, \infty\right)}(|\xi|)$ is integrable and $\lambda_{d}(\partial D)=0$, by (3.12), (3.15) now the claim (3.14) follows.

To prove the theorem we consider only the case $s=0$. Denote $Z^{(0, x)}(\cdot), Y^{(0, x)}(\cdot)$ by $Z(\cdot), Y(\cdot)$. We want to prove that for $x \in \bar{D}, t>0$,

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} E \int_{0}^{t} \Delta^{\alpha / 2} f_{\epsilon}(Z(r)) d r=0 \tag{3.16}
\end{equation*}
$$

By Theorem 3.3 and (3.13) for each $\epsilon>0$,

$$
\begin{equation*}
E \int_{0}^{t} 1_{\partial D}(Z(r)) \Delta^{\alpha / 2} f_{\epsilon}(Z(r)) d r=0 \tag{3.17}
\end{equation*}
$$

For $c>0$, put $D_{c}=(2 c, \infty)^{d}$. In view of (3.17), to prove (3.16) it is enough to prove that

$$
\begin{equation*}
\lim _{\epsilon \downharpoonright 0} E \int_{0}^{t} 1_{D_{c}}(Z(u)) \Delta^{\alpha / 2} f_{\epsilon}(Z(u)) d u=0 \tag{3.18}
\end{equation*}
$$

for any fixed $c>0$. If $z \in D_{c},|\xi|<c$ note that $z_{i}+\xi_{i}>c, 1 \leq i \leq d$. So one can choose $\epsilon_{0}>0$ such that $f_{\epsilon}(z+\xi)=0$ for all $|\xi|<c, z \in D_{c}, \epsilon<\epsilon_{0}$. Hence for any $\epsilon<\epsilon_{0}$

$$
\left|1_{D_{c}}(Z(u)) \Delta^{\alpha / 2} f_{\epsilon}(Z(u))\right| \leq \int_{|\xi|>c} \frac{1}{|\xi|^{d+\alpha}} d \xi \leq C \frac{1}{\alpha c^{\alpha}}
$$

The required assertion (3.18) and hence (3.16) now follows by (3.14) and dominated convergence theorem.

Now to prove (3.11) (with $s=0$), first consider the case $x \notin \partial D$. Since $\partial f_{\epsilon}(\cdot) / \partial z_{i}=0$ on ∂D, and $Y(\cdot)$ can increase only when $Z(\cdot) \in \partial D$, by Ito's formula

$$
E\left[f_{\epsilon}(Z(t))\right]-f_{\epsilon}(x)=E \int_{0}^{t} \Delta^{\alpha / 2} f_{\epsilon}(Z(r)) d r .
$$

By (3.12), (3.16) letting $\epsilon \downarrow 0$ in the above we get (3.11).
Next let $x \in \partial D$; for $c>0$ let $\eta \equiv \eta_{c}^{(x)}=\inf \left\{r \geq 0: Z(r) \in \bar{D}_{c}\right\}$. By strong Markov property and the preceding case

$$
E\left[1_{[0, t]}(\eta) 1_{\partial D}(Z(t))\right]=0
$$

Note that $\left\{\eta_{c}^{(x)} \leq t\right\} \uparrow \Omega$ (modulo null set) as $c \downarrow 0$; otherwise we will get a contradiction to Theorem 3.3. Letting $c \downarrow 0$ in the above we get the required conclusion. This completes the proof.

Note: It may be interesting to compare the proofs of Theorems $3.3,3.5$ with those of their analogues for reflected Brownian motion given in [6].

In the following $\nabla_{2} p(r, y ; t, z)=\nabla_{2} p(r, \cdot ; t, z), \Delta_{2}^{\alpha / 2} p(r, y ; t, z)=\Delta_{2}^{\alpha / 2} p(r, \cdot ; t, z)$ denote respectively the operators $\nabla, \Delta^{\alpha / 2}$ applied as function of y-variables. Our main result is

Theorem 3.6. Assume (A1) - (A3); let $1<\alpha<2$. For $0 \leq s<t<\infty, x \in$ $\bar{D}, z \in D$ define

$$
\begin{align*}
p^{R}(s, x ; t, z)= & p(s, x ; t, z) \\
& +E \int_{s}^{t}\left\langle R(u, Y(u-), Z(u-)) \nabla_{2} p(u, Z(u) ; t, z), d Y(u)\right\rangle \tag{3.19}
\end{align*}
$$

where $Y(\cdot)=Y^{(s, x)}(\cdot), Z(\cdot)=Z^{(s, x)}(\cdot)$. For $0 \leq s<t, x \in \bar{D}, z \in \partial D$ take $p^{R}(s, x ; t, z)=0$. Then (i) p^{R} is continuous on $\{0 \leq s<t<\infty, x \in \bar{D}, z \in D\}$, it is also differntiable in (t, z); (ii) for any Borel set $A \subseteq \bar{D}, s<t, x \in \bar{D}$

$$
\begin{equation*}
P\left(Z^{(s, x)}(t) \in A\right)=\int_{A} p^{R}(s, x ; t, z) d z \tag{3.20}
\end{equation*}
$$

In case R is independent of y-variables, p^{R} is the transition probability density function of the Markov process $Z(\cdot)$.

We need a lemma
Lemma 3.7. Hypotheses and notation as in the Proposition 3.2. If $\left(s_{n}, x_{n}\right) \rightarrow(s, x)$ then for a.a. ω, for $T>s$

$$
\begin{array}{rll}
\operatorname{var}\left(Y^{\left(s_{n}, x_{n}\right)}(\cdot, \omega)-Y^{(s, x)}(\cdot, \omega) ;[s, T]\right) & \rightarrow 0 \\
\sup _{s \leq t \leq T}\left|Z^{\left(s_{n}, x_{n}\right)}(t, \omega)-Z^{(s, x)}(t, \omega)\right| & \rightarrow 0 .
\end{array}
$$

Proof: Denote $Z^{(n)}(\cdot)=Z^{\left(s_{n}, x_{n}\right)}(\cdot), Y^{(n)}(\cdot)=Y^{\left(s_{n}, x_{n}\right)}(\cdot), Z(\cdot)=Z^{(s, x)}(\cdot)$, $Y(\cdot)=Y^{(s, x)}(\cdot)$. We first consider the case $s_{n}<s$ for all n. Clearly $Z^{(n)}(t, \omega)$, $Y^{(n)}(t, \omega), t \geq s$ is the solution to the Skorokhod problem corresponding to $Z^{(n)}(s, \omega)+B(\cdot, \omega)-B(s, \omega)$. For any $T>s$ note that

$$
\begin{aligned}
& \operatorname{var}\left(\left[B(\cdot, \omega)-B(s, \omega)+Z^{(n)}(s, \omega)\right]-[B(\cdot, \omega)-B(s, \omega)+x] ;[s, T]\right) \\
= & \left|Z^{(n)}(s, \omega)-x\right|
\end{aligned}
$$

For any ω such that $B(\cdot, \omega)$ is continuous at s we have $x_{n}+B(s, \omega)-B\left(s_{n}, \omega\right) \rightarrow$ x. Boundedness of R and (3.4) imply

$$
\left|\int_{s_{n}}^{s} R\left(u, Y^{(n)}(u-), Z^{(n)}(u-)\right) d Y^{(n)}(u, w)\right| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus $\left|Z^{(n)}(s, \omega)-x\right| \rightarrow 0$, and hence the result follows by Proposition 3.9 of [11].

Next let $s_{n}>s$ for all n. For any $n, Z(t, \omega), Y(t, \omega), t \geq s_{n}$ is the solution to the Skorokhod problem corresponding to $Z\left(s_{n}, \omega\right)+B(\cdot, \omega)-B\left(s_{n}, \omega\right)$. Clearly

$$
\begin{aligned}
& \left.\operatorname{var}\left(\left[x_{n}+B(\cdot, \omega)-B\left(s_{n}, \omega\right)\right]-\left[Z\left(s_{n}, \omega\right)+B(\cdot, \omega)-B\left(s_{n}, \omega\right)\right]\right) ;\left[s_{n}, T\right]\right) \\
= & \left|Z\left(s_{n}, \omega\right)-x_{n}\right| .
\end{aligned}
$$

So by the arguments as in [11]

$$
\begin{aligned}
\operatorname{var}\left(Y^{(n)}(\cdot, \omega)-Y(\cdot, \omega) ;\left[s_{n}, T\right]\right) & \leq C\left|Z\left(s_{n}, \omega\right)-x_{n}\right| \\
\sup _{s_{n} \leq t \leq T}\left|Z^{(n)}(t, \omega)-Z(t, \omega)\right| & \leq C\left|Z\left(s_{n}, \omega\right)-x_{n}\right| .
\end{aligned}
$$

Note that for $s \leq t \leq s_{n}$ we may take $Z^{(n)}(t, \omega)=x_{n}, Y^{(n)}(t, \omega)=0$. Clearly $\operatorname{var}\left(Y(\cdot, \omega) ;\left[s, s_{n}\right]\right), \sup _{s \leq t \leq s_{n}}\left|x_{n}-Z(t, \omega)\right|,\left|Z\left(s_{n}, \omega\right)-x_{n}\right|$ all tend to 0 as $s_{n} \rightarrow s$ by right continuity. The required conclusion is now immediate.

Proof of Theorem 3.6: Since $d Y^{(s, x)}(\cdot)$ can charge only when $Z^{(s, x)}(\cdot) \in \partial D$ and $d(z, \partial D)>0$ for $z \notin \partial D$, well definedness of (3.19) follows from (2.12) and Proposition 3.2.

Assertion (i) now follows from properties of p (viz. (2.11), (2.12), Proposition 2.4), boundedness and continuity of R and Lemma 3.7.

To prove assertion (ii), in view of Theorem 3.5, it is enough to establish (3.20) when $A \subset D$.

Fix $t>s$; let $\epsilon>0$. Apply Ito's formula to $p\left(r, Z^{(s, x)}(r) ; t, z\right), s \leq r \leq(t-\epsilon)$ corresponding to the semimartingale $Z^{(s, x)}(\cdot)$ and use Theorem 2.5 to get

$$
\begin{align*}
p(t-\epsilon, Z(t-\epsilon) ; t, z)= & p(s, x ; t, z) \\
& +\int_{s}^{t-\epsilon}\left\langle R(r, Y(r-), Z(r-)) \nabla_{2} p(r, Z(r) ; t, z), d Y(r)\right\rangle \\
& + \text { a stochastic integral. } \tag{3.21}
\end{align*}
$$

Let f be a continuous function with compact support $K \subset D$. By (3.21) for any $\epsilon>0$

$$
\begin{array}{r}
E \int_{D} f(z) p(t-\epsilon, Z(t-\epsilon) ; t, z) d z=\int_{D} f(z) p(s, x ; t, z) d z \\
+E \int_{D} f(z) \int_{s}^{t-\epsilon}\left\langle R(r, Y(r-), Z(r-)) \nabla_{2} p(r, Z(r) ; t, z), d Y(r)\right\rangle d z \tag{3.22}
\end{array}
$$

For any ω, note that $p(t-\epsilon, Z(t-\epsilon, \omega) ; t, z) d z \Rightarrow \delta_{Z(t-, \omega)}(d z)$ as $\epsilon \downarrow 0$. And since $P(Z(t) \neq Z(t-))=0$ it now follows that

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}[\text { l.h.s. of }(3.22)]=E\left[f\left(Z^{(s, x)}(t)\right)\right] \text {. } \tag{3.23}
\end{equation*}
$$

As $d(K, \partial D)>0$, by (2.12), Proposition 3.2 and boundedness of $f(\cdot), R(\cdot)$

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}[\text { r.h.s. of }(3.22)]=\int_{D} f(z) p^{R}(s, x ; t, z) d z \tag{3.24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{D} f(z) p^{R}(s, x ; t, z) d z=E\left[f\left(Z^{(s, x)}(t)\right)\right] \tag{3.25}
\end{equation*}
$$

for any continuous function f with compact support in D.
Next for any open set $F \subset D$, let $\left\{f_{n}\right\}$ be a sequence of continuous functions with compact support in D such that $f_{n} \uparrow 1_{F}$ pointwise. Clearly

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[f_{n}\left(Z^{(s, x)}(t)\right)\right]=E\left[1_{F}\left(Z^{(s, x)}(t)\right)\right] . \tag{3.26}
\end{equation*}
$$

Taking expectation in (3.21) and letting $\epsilon \downarrow 0$ we get

$$
p^{R}(s, x ; t, z)=\lim _{\epsilon \downarrow 0} E[p(t-\epsilon, Z(t-\epsilon) ; t, z)] \geq 0 .
$$

Therefore by monotone convergence theorem

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{D} f_{n}(z) p^{R}(s, x ; t, z) d z=\int_{D} 1_{F}(z) p^{R}(s, x ; t, z) d z \tag{3.27}
\end{equation*}
$$

Now (3.25), (3.26), (3.27) imply that (3.20) holds for any open $F \subset D$, and hence for any Borel set $A \subset D$.

Finally, the last assertion is immediate from (ii); this completes the proof.
We conclude with the following questions.

1. Can $(x, z) \mapsto p^{R}(s, x ; t, z)$ given by (3.19) be extended continuously to $\bar{D} \times \bar{D}$?
2. Is $p^{R}(s, x ; t, z)>0$ for $s<t, x, z \in D$?
3. When is p^{R} symmetric in x, z ?

Acknowledgement: The authors thank B. Rajeev and S. Thangavelu for some useful discussions; and Siva Athreya for bringing [1] to their notice while the work was in progress.

Amites Dasgupta	S. Ramasubramanian
Stat.-Math. Unit	Stat.-Math. Unit
Indian Statistical Institute	Indian Statistical Institute
203 B.T. Road	8th Mile Mysore Road
Kolkata - 700 108	Bangalore -560059

Bibliography

[1] R. Atar and A. Budhiraja : Stability properties of constrained jumpdiffusion processes. Preprint, 2001.
[2] S. Balaji and S. Ramasubramanian: Asymptotics of reflecting diffusions in an orthant. Proc. Internat. Conf. Stochastic Processes, December'96, pp. 57-81. Cochin University of Science and Technology, Kochi, 1998.
[3] I. Bardhan : Further applications of a general rate conservation law. Stochastic Process. Appl. 60 (1995) 113-130.
[4] K. Bogdan : The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997) 43-80.
[5] K. Bogdan and T. Byczkowski : Potential theory for the α-stable Schrodinger operator on bounded Lipschitz domains. Studia Math. 133 (1999) 53-92.
[6] J. M. Harrison and R. J. Williams : Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 (1987) 77-115.
[7] N. Ikeda and S. Watanabe : Stochastic differential equations and diffusion processes. North-Holland, Amsterdam, 1981.
[8] K. Ito : Lectures on Stochastic Processes. Tata Institute of Fundamental Research, Bombay, 1961.
[9] O. Kella : Concavity and reflected Lévy process. J. Appl. Probab. 29 (1992) 209-215.
[10] S. Ramasubramanian : Transition densities of reflecting diffusions. Sankhya Ser. A 58 (1996) 347-381.
[11] S. Ramasubramanian : A subsidy-surplus model and the Skorokhod problem in an orthant. Math. Oper. Res. 25 (2000) 509-538.
[12] S. Ramasubramanian : Reflected backward stochastic differential equations in an orthant. Proc. Indian Acad. Sci. (Math. Sci.) 112 (2002) 347-360.
[13] G. Samorodnitsky and M. S. Taqqu : Stable non-gaussian random processes : stochastic models with infinite variance. Chapman and Hall, New York, 1994.
[14] W. Whitt : An overview of Brownian and non-Brownian FCLT's for the single-server queue. Queueing Systems Theory Appl. 36 (2000) 39-70.

