Transition Density of a Reflected Symmetric Stable Lévy Process in an Orthant

Amites Dasgupta and S. Ramasubramanian Indian Statistical Institute

Abstract

Let $\{Z^{(s,x)}(t) : t \ge s\}$ denote the reflected symmetric α -stable Lévy process in an orthant D (with nonconstant reflection field), starting at (s,x). For $1 < \alpha < 2, 0 \le s < t, x \in \overline{D}$ it is shown that $Z^{(s,x)}(t)$ has a probability density function which is continuous away from the boundary, and a representation given.

1 Introduction

Due to their applications in diverse fields, symmetric stable Lévy processes have been studied recently by several authors; see [4], [5] and the references therein. In the meantime reflected Lévy processes have been advocated as heavy traffic models for certain queueing/stochastic networks; see [14]. The natural way of defining a reflected/regulated Lévy process is via the Skorokhod problem as in [9], [3], [11], [1].

In this article we consider reflected/regulated symmetric α -stable Lévy process in an orthant, show that transition probability density function exists when $1 < \alpha < 2$ and is continuous away from the boundary; the reflection field can have fairly general time-space dependencies as in [11]. It may be emphasized that unlike the case of reflected diffusions (see [10]) powerful tools/methods of PDE theory are not available to us. To achieve our purpose we use an analogue of a representation for transition density (of a reflected diffusion) given in [2].

Section 2 concerns preliminary results on symmetric α -stable Lévy process in \mathbb{R}^d , its transition probability density function and the potential operator. In Section 3, corresponding reflected process with time-space dependent reflection field at the boundary is studied. A major effort goes into proving that the distribution of the reflected process at any given time t > 0 gives zero probability to the boundary.

2 Symmetric stable Lévy process

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ be a filtered probability space, $d \geq 2, 0 < \alpha < 2$. Let $\{B(t) : t \geq 0\}$ be an \mathcal{F}_t -adapted d-dimensional symmetric α -stable Lévy process. That is, $\{B(t)\}$ is an \mathbb{R}^d -valued homogeneous Lévy process (with independent increments) with r.c.l.l. sample paths; it is rotation invariant and

$$E[\exp\{i\langle u, B(t) - x\rangle\}|B(0) = x] = \exp\{-t|u|^{\alpha}\}$$
(2.1)

for $t \ge 0, u \in \mathbb{R}^d, x \in \mathbb{R}^d$. It is a pure jump strong Markov process. Using Lévy-Ito theorem and Ito's formula, it can be shown that the (weak) infinitesimal generator of $B(\cdot)$ is given by the *fractional Laplacian*

$$\Delta^{\alpha/2} f(x) = \lim_{r \downarrow 0} C(d, \alpha) \int_{|\xi| > r} \frac{f(x+\xi) - f(x)}{|\xi|^{d+\alpha}} d\xi$$

$$(2.2)$$

whenever the right side makes sense, where $C(d, \alpha) = \Gamma(\frac{d+\alpha}{2})/[2^{-\alpha}\pi^{d/2}|\Gamma(\frac{\alpha}{2})|];$ the measure $\nu(d\xi) = C(d, \alpha) \frac{1}{|\xi|^{d+\alpha}} d\xi$ is called the Lévy measure of $B(\cdot)$. Also, for any t > 0,

$$P(B(t) \neq B(t-)) = 0.$$
 (2.3)

See [4], [5], [7], [8] for more information.

For a function g on \mathbb{R}^d , $g_i(x) = \partial g(x) / \partial x_i$, $g_{ij}(x) = \partial^2 g(x) / \partial x_i \partial x_j$, $1 \le i, j \le d$. Lemma 2.1. If $f \in C_b^2(\mathbb{R}^d)$ then $\Delta^{\alpha/2} f \in C_b(\mathbb{R}^d)$.

Proof: For $0 < r < s, \Delta_{r,s}^{\alpha/2}$ is defined by

$$\Delta_{r,s}^{\alpha/2}\psi(z) = C(d,\alpha) \int_{r<|\xi|< s} \frac{\psi(z+\xi) - \psi(z)}{|\xi|^{d+\alpha}} d\xi.$$
(2.4)

Let $f \in C_b^2(\mathbb{R}^d)$. For any $x \in \mathbb{R}^d$ observe that

$$\frac{|f(x+\xi) - f(x)|}{|\xi|^{d+\alpha}} \mathbf{1}_{(1,\infty)}(|\xi|) \le 2||f||_{\infty} \frac{1}{|\xi|^{d+\alpha}} \mathbf{1}_{(1,\infty)}(|\xi|)$$
(2.5)

and that as $\alpha > 0$

$$\int_{|\xi|>1} \frac{1}{|\xi|^{d+\alpha}} d\xi = C \int_{1}^{\infty} r^{-(\alpha+1)} dr < \infty.$$
 (2.6)

So continuity of f and dominated convergence theorem imply that $\Delta_{1,\infty}^{\alpha/2} f$ is well defined, bounded and continuous. Next, Taylor expansion gives

$$f(x+\xi) - f(x) = \sum_{i=1}^{d} f_i(x)\xi_i + \frac{1}{2}\sum_{i,j=1}^{d} f_{ij}(y)\xi_i\xi_j$$
(2.7)

where y is point on the line segment joining x and $x + \xi$. Since $\xi \mapsto \xi_i$ is an odd function for each i

$$\int_{|\xi|<1} \xi_i \frac{1}{|\xi|^{d+\alpha}} d\xi = 0.$$
(2.8)

Note that $\sum_{i,j=1}^{d} f_{ij}(y)\xi_i\xi_j = O(|\xi|^2)$ and

$$\int_{0 < |\xi| < 1} |\xi|^2 \frac{1}{|\xi|^{d+\alpha}} d\xi = C \int_0^1 r^{-\alpha+1} dr < \infty$$
(2.9)

as $\alpha > 2$. Since $f_{ij}(\cdot) \in C_b(\mathbb{R}^d)$ it is now easily seen that $\lim_{r \downarrow 0} \Delta_{r,1}^{\alpha/2} f$ is well defined, bounded and continuous. Since

$$\Delta^{\alpha/2} f(x) = \Delta^{\alpha/2}_{1,\infty} f(x) + \lim_{r \downarrow 0} \Delta^{\alpha/2}_{r,1} f(x)$$
(2.10)

the lemma now follows.

It is known that the process $B(\cdot)$ has a transition density function; we now give a representation for it.

Theorem 2.2. The transition probability density function of $B(\cdot)$ is given by

$$p(s,x;t,z) = (4\pi)^{-d/2} (t-s)^{-d/\alpha} \int_{0}^{\infty} \frac{g(r)}{r^d} \exp\left\{-\frac{1}{4(t-s)^{2/\alpha}} \frac{1}{r^2} |z-x|^2\right\} dr (2.11)$$

for $0 \leq s < t < \infty, x, z \in \mathbb{R}^d$, where $g(\cdot)$ is the density function of the square root of an $\frac{\alpha}{2}$ -stable positive random variable.

Proof: By homogeneity enough to consider s = 0, x = 0. Let t > 0. By (2.1) and Proposition 2.5.5 (on pp. 79-80) of [13] it follows that $B(t) = (B_1(t), \ldots, B_d(t))$ is sub-gaussian and that there exist independent one-dimensional random variables S, U_1, \ldots, U_d such that $U_i \sim N(0, 2t^{2/\alpha}), 1 \leq i \leq d, S$ is $\frac{\alpha}{2}$ -stable positive random variable and $(B_1(t), \ldots, B_d(t)) \sim (S^{\frac{1}{2}}U_1, S^{\frac{1}{2}}U_2, \ldots, S^{\frac{1}{2}}U_d)$. Denoting by $g(\cdot)$ the density of $S^{1/2}$, the joint density of $(U_1, \ldots, U_d, S^{1/2})$ is given by

$$h(\xi_1, \dots, \xi_d, r) = \left(\frac{1}{4\pi}\right)^{d/2} \left(\frac{1}{t}\right)^{d/\alpha} g(r) \exp\left\{-\frac{1}{4t^{2/\alpha}} \sum_{i=1}^d \xi_i^2\right\}.$$

Using the invertible transformation $(\xi_1, \ldots, \xi_d, r) \mapsto (r\xi_1, \ldots, r\xi_d, r)$ on $\mathbb{R}^d \times (0, \infty)$ the joint density of $(B_1(t), \ldots, B_d(t), S^{1/2})$ is given by

$$\tilde{h}(y_1, \dots, y_d, r) = \frac{1}{r^d} h\left(\frac{1}{r}y_1, \dots, \frac{1}{r}y_d, r\right) \\ = \left(\frac{1}{4\pi}\right)^{d/2} \left(\frac{1}{t}\right)^{d/\alpha} \frac{1}{r^d} g(r) \exp\left\{-\frac{1}{4t^{2/\alpha}} \frac{1}{r^2} \sum_{i=1}^d y_i^2\right\}.$$

Now integrating w.r.t. r we get (2.11).

Remark 2.3. From the preceding theorem it follows that $\int_{0}^{\infty} \frac{1}{r^{k}}g(r)dr < \infty$ for $k = 2, 3, \ldots$ Indeed note that $g(\cdot)$ depends only on α ; so if we consider k-dimensional symmetric α -stable Lévy process then the transition density will be given by (2.11) with d replaced by k; and as the density is well defined at x = z the claim follows.

Proposition 2.4. Denote
$$p_0(s, x; t, z) = \partial p(s, x; t, z) / \partial s$$
, $p_i(s, x; t, z) = \partial p(s, x; t, z) / \partial x_i$, $p_{ij}(s, x; t, z) = \partial^2 p(s, x; t, z) / \partial x_i \partial x_j$, $1 \le i, j \le d$.

(i) Fix $t > 0, z \in \mathbb{R}^d$. Let $t_0 < t$; then $p, p_0, p_i, p_{ij}, 1 \leq i, j \leq d$ are bounded continuous functions of (s, x) on $[0, t_0] \times \mathbb{R}^d$.

(ii) For any $t > 0, \delta > 0$

$$\sup\{|\nabla_x p(s, x; t, z)| : 0 \le s < t, |z - x| \ge \delta\} \le K(d, \delta)$$
(2.12)

where $K(d, \delta)$ is a constant depending only on d, δ and ∇_x denotes gradient w.r.t. x-variables.

Proof: (i) Since ye^{-y^2} , $y^2e^{-y^2}$ are bounded, using Remark 2.3 and dominated convergence theorem, the assertion can be proved by differentiating w.r.t. s, x under the integral in (2.11).

(ii) Since $y^{d+2}e^{-y^2}$ is bounded, differentiating under the integral in (2.11) we get for all $0 \le s < t, |z - x| \ge \delta$

$$\begin{aligned} |\nabla_x p(s, x; t, z)| \\ &\leq K(d) \int_0^\infty g(r) \left(\frac{2}{|z-x|}\right)^{d+1} \left(\frac{|z-x|}{2r(t-s)^{1/\alpha}}\right)^{d+2} \exp\left\{-\frac{|z-x|^2}{4r^2(t-s)^{2/\alpha}}\right\} dr \\ &\leq \hat{K}(d) \left(\frac{2}{\delta}\right)^{d+1} \int_0^\infty g(r) dr = K(d, \delta). \end{aligned}$$

The following result indicates a connection between the transition density and the generator; though it is not unexpected, a proof is given for the sake of completeness.

Theorem 2.5. For fixed $t > 0, z \in \mathbb{R}^d$ the function $(s, x) \mapsto p(s, x; t, z)$ satisfies the Kolmogorov backward equation

$$p_0(s, x; t, z) + \Delta_x^{\alpha/2} p(s, x; t, z) = 0, s < t, x \in \mathbb{R}^d$$
(2.13)

where p_0 is as in the preceding proposition and x in $\Delta_x^{\alpha/2}$ signifies that $\Delta^{\alpha/2}$ is applied to p as a function of x.

Proof: By the preceding proposition and Lemma 2.1 $\Delta_x^{\alpha/2} p(s, x; t, z)$ is a bounded continuous function. Put $u(s, x) = p(s, x; t, z), s < t, x \in \mathbb{R}^d$. Using Ito's formula (see [7]) for $0 \le s < c < t, x \in \mathbb{R}^d$

$$E\{u(c, B(c)) - u(s, B(s)) - \int_{s}^{c} [u_0(r, B(r)) + \Delta^{\alpha/2} u(r, B(r))] dr | B(s) = x\} = 0.$$

That is

$$\int_{\mathbb{R}^d} p(c, y; t, z) p(s, x; c, y) dy - p(s, x; t, z)$$

$$= \int_s^c \int_{\mathbb{R}^d} [p_0(r, y; t, z) + \Delta_y^{\alpha/2} p(r, y; t, z)] p(s, x; r, y) dy dr$$

By Chapman-Kolmogorov equation, l.h.s. of the above is zero. As the above holds for all c > s and the quantity within double brackets is bounded continuous in (r, y), by Feller continuity one can obtain (2.13) from the above letting $c \downarrow s$. \Box

We next look at the 0-resolvent (or potential operator) associated with the process $B(\cdot)$. For a measurable function φ on $\mathbb{R}^d, x \in \mathbb{R}^d$ define

$$G\varphi(x) = \int_{\mathbb{R}^d} \varphi(z) \int_0^\infty p(0,x;t,z) dt \ dz = \int_0^\infty \int_{\mathbb{R}^d} \varphi(z) p(0,x;t,z) dz \ dt \quad (2.14)$$

whenever the r.h.s. makes sense. Since $0 < \alpha < 2 \leq d$, using (2.11) it is not difficult to see that

$$\int_{0}^{\infty} p(0,x;t,z) = C \frac{1}{|z-x|^{d-\alpha}}, z \neq x$$
(2.15)

which is the so called Riesz kernel.

Theorem 2.6. Let $\varphi \in C_b^2(\mathbb{R}^d)$ and $\varphi, \varphi_i, \varphi_{ij}, 1 \leq i, j \leq d$ be integrable w.r.t. the d-dimensional Lebesgue measure. Then (a) $G\varphi \in C_b^2(\mathbb{R}^d)$, (b) $(G\varphi)_i(x) = G\varphi_i(x)$, $(G\varphi)_{ij}(x) = G\varphi_{ij}(x)$, $x \in \mathbb{R}^d, 1 \leq i, j \leq d$ (c) $\Delta^{\alpha/2}G\varphi(x) = -\varphi(x), x \in \mathbb{R}^d$.

We need a lemma

Lemma 2.7. If $f \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ then Gf is well defined, bounded and continuous.

Proof: Let $\{T_t\}$ be the contraction semigroup associated with $B(\cdot)$. Observe that

$$Gf(x) = \int_{0}^{1} T_{t}f(x)dt + \int_{1}^{\infty} \int_{\mathbb{R}^{d}} f(z)p(0,x;t,z)dz \ dt.$$
(2.16)

Since $T_t f$ is continuous for each t > 0 and $|T_t f(\cdot)| \le ||f||_{\infty}$ it is clear that the first term on r.h.s. is bounded and continuous. By (2.11)

$$|f(z)p(0,x;t,z)1_{(1,\infty)}(t)| \le K t^{-d/\alpha} |f(z)| 1_{(1,\infty)}(t)$$

which is integrable as $0 < \alpha < 2 \le d$. So continuity of p in x now implies that the second term on r.h.s. of (2.16) is bounded and continuous.

Proof of Theorem 2.6: By Lemma 2.6 we get $G\varphi, G\varphi_i, G\varphi_{ij}$ are bounded continuous. A simple change of variables yields

$$\begin{aligned} \frac{1}{h} [G\varphi(x+he_i) - G\varphi(x)] &= \int_0^\infty \int_{\mathbb{R}^d} \frac{\varphi(z+he_i) - \varphi(z)}{h} p(0,x;t,z) dz \ dt \\ &\to \int_0^\infty \int_{\mathbb{R}^d} \varphi_i(z) p(0,x;t,z) dz \ dt \end{aligned}$$

by dominated convergence theroem; thus $(G\varphi)_i(x) = G\varphi_i(x)$. An analogous argument gives $(G\varphi)_{ij}(x) = G\varphi_{ij}(x)$ for all x. By Lemma 2.1 note that $\Delta^{\alpha/2}G\varphi$ is well defined, bounded and continuous. To prove the last assertion, by Chapman-Kolmogorov equation we get

$$\begin{split} \Delta^{\alpha/2} G\varphi(x) &= \lim_{t\downarrow 0} \frac{T_t G\varphi(x) - G\varphi(x)}{t} \\ &= \lim_{t\downarrow 0} \frac{1}{t} \left[\int_0^\infty \int_{\mathbb{R}^d} \varphi(z) p(0,x;t+s,z) dz \ ds - \int_0^\infty \int_{\mathbb{R}^d} \varphi(z) p(0;x;s,z) dz \ ds \right] \\ &= \lim_{t\downarrow 0} \frac{1}{t} \left[- \int_0^t \int_{\mathbb{R}^d} \varphi(z) p(0,x;s,z) dz \ ds \right] = -\varphi(x) \end{split}$$

for each $x \in \mathbb{R}^d$, completing the proof.

3 Reflected process

Let $D = \{x \in \mathbb{R}^d : x_i > 0, 1 \leq i \leq d\}$ be the *d*-dimensional positive orthant. The reflection field is a function $R : [0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{M}_d(\mathbb{R})$ where $\mathbb{M}_d(\mathbb{R})$ is the space of $(d \times d)$ matrices with real entries. We write $R(t, y, z) = (r_{ij}(t, y, z))$. We assume the following

Assumptions (A1) The function $(y, z) \mapsto r_{ij}(t, y, z)$ is Lipschitz continuous, uniformly in t, for $1 \leq i, j \leq d$.

(A2) For $i \neq j$, there exist v_{ij} such that $|r_{ij}(t, y, z)| \leq v_{ij}$ for all t, y, z. Set $V = ((v_{ij}))$ with $v_{ii} = 0$. We assume spectral radius of $V = \sigma(V) < 1$.

(A3) Take $r_{ii}(\cdot, \cdot, \cdot) \equiv 1, 1 \leq i \leq d$.

(A2) is a uniform Harrison-Reiman condition that has proved useful in queueing networks; (A3) is just a suitable normalization.

Let $s \ge 0, x \in \overline{D}$. The Skorokhod problem in \overline{D} corresponding to $\{B(t) : t \ge s\}$ and R consists in finding \mathcal{F}_t -adapted r.c.l.l. processes $Y^{(s,x)}(t), Z^{(s,x)}(t), t \ge s$ such that

(i) $Z^{(s,x)}(t) \in \overline{D}$ for all $t \ge s$; (ii) $Y_i^{(s,x)}(s) = 0, Y_i^{(s,x)}(\cdot)$ is nondecreasing, $1 \le i \le d$; (iii) $Y_i^{(s,x)}(\cdot)$ can increase only when $Z_i^{(s,x)}(\cdot) = 0$; that is, for $1 \le i \le d, t \ge s$,

$$Y_i^{(s,x)}(t) = \int_s^t \mathbf{1}_{\{0\}}(Z_i^{(s,x)}(r))dY_i^{(s,x)}(r), a.s.$$
(3.1)

(iv) Skorokhod equation holds, viz. for $1 \le i \le d, t \ge s$

$$Z_{i}^{(s,x)}(t) = x_{i} + B_{i}(t) - B_{i}(s) + Y_{i}^{(s,x)}(t) + \sum_{j \neq i} \int_{s}^{t} r_{ij}(u, Y^{(s,x)}(u-), Z^{(s,x)}(u-)) dY_{j}^{(s,x)}(u)$$
(3.2)

or in vector notation

$$Z^{(s,x)}(t) = x + B(t) - B(s) + \int_{s}^{t} R(u, Y^{(s,x)}(u-), Z^{(s,x)}(u-)) dY^{(s,x)}(u).$$
(3.3)

Solving the deterministic Skorokhod problem path by path one can solve the above stochastic problem. Indeed the following result is given in [11].

Proposition 3.1. Assume (A1) - (A3). For each $s \ge 0, x \in \overline{D}$ there is a unique pair $Z^{(s,x)}(\cdot), Y^{(s,x)}(\cdot)$ solving the above problem; also

$$Y_i^{(s,x)}(t) \le ((I-V)^{-1}L^{(s,x)})_i(t), a.s.$$
(3.4)

for $t \geq s$ where $L^{(s,x)}(\cdot)$ is given by

$$L_i^{(s,x)}(t) = \sup_{s \le u \le t} \max\{0, -[x_i + B_i(t) - B_i(s)]\}.$$

Moreover $\{(Z^{(s,x)}(t), Y^{(s,x)}(t)) : t \geq s\}$ is an \mathcal{F}_t -adapted $\overline{D} \times \overline{D}$ -valued Feller continuous strong Markov process. Any discontinuity of $Y^{(s,x)}(\cdot, \omega)$ or $Z^{(s,x)}(\cdot, \omega)$ has to be a discontinuity of $B(\cdot, \omega)$. If R is a function only of t, z then $\{Z^{(s,x)}(t) : t \geq s\}$ is a \overline{D} -valued Feller continuous strong Markov process. \Box

The z-part of the above viz. $\{Z^{(s,x)}(t) : t \ge s\}$ may be called the *reflected (or regulated) symmetric* α -stable Lévy process.

Proposition 3.2. Assume (A1) - (A3) and let $1 < \alpha < 2$. Then $E[var(Y^{(s,x)}(\cdot); [s,t])] < \infty$ for all $t > s \ge 0, x \in \overline{D}$, where var $(g(\cdot); [a,b])$ denotes the total variation of g over [a,b].

Proof: As $Y_i^{(s,x)}(\cdot)$ is nondecreasing for each *i* it is enough to show that $E|Y_i^{(s,x)}t)|$

 $<\infty$; also we may take s = 0, x = 0. Since $\alpha > 1$ note that $E|B_i(t)|^{\alpha'} < \infty$ for all $1 \le \alpha' < \alpha$. As $B(\cdot)$ is symmetric note that it is a martingale. (3.4) of the preceding proposition implies

$$E|Y_i^{(0,0)}(t)|^{\alpha'} \le C \ E\left[\sup_{0 \le r \le t} |B_i(r)|\right]^{\alpha'} \le \hat{C} \ E|B_i(t)|^{\alpha'} < \infty$$

by Doob's maximal inequality for any $1 < \alpha' < \alpha$. The required conclusion now follows.

Note: In the context of reflected processes, the reflection terms are usually specified only for z on the boundary. However, no matter how the reflection

field is extended to \overline{D} or \mathbb{R}^d , only the values on the boundary determine the process; Theorem 4.5 of [12] and its proof can be easily adapted to our situation.

The next result concerns expected occupation time at the boundary.

Theorem 3.3. Assume (A1) - (A3); let $1 < \alpha < 2$. Then for $s \ge 0, x \in \overline{D}, t > s$

$$E\left[\int_{s}^{t} 1_{\partial D}(Z^{(s,x)}(r))dr\right] = 0.$$
(3.5)

Proof: We consider only s = 0. Note that $\partial D = \{x \in \mathbb{R}^d : x_i = 0 \text{ for some } i\}$. Let $H = \{x \in \mathbb{R}^d : \min_i |x_i| \le 1\}$. Let $\varphi \in C_b^2(\mathbb{R}^d)$ be such that (i) $0 \le \varphi(\cdot) \le 1$, (ii) $\partial D = \{\varphi = 1\}$, (iii) $\varphi(\cdot) = 0$ on H^c and (iv) $\varphi, \varphi_i, \varphi_{ij}$ are integrable.

For $0 < \epsilon \leq 1$ define φ_{ϵ} on \mathbb{R}^d by $\varphi_{\epsilon}(z) = \varphi(z/\epsilon)$. Note that $\varphi_{\epsilon}, \varphi_{\epsilon,i}, \varphi_{\epsilon,ij} \epsilon C_b(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$; also they are supported on $\epsilon H \subseteq H$. Clearly

$$\lim_{\epsilon \downarrow 0} \varphi_{\epsilon}(z) = 1_{\partial D}(z), \text{ for all } z \in \mathbb{R}^d.$$
(3.6)

Next define g_{ϵ} on \mathbb{R}^d by

$$g_{\epsilon}(x) = \int_{\mathbb{R}^d} -\frac{1}{\epsilon^{\alpha}} \varphi_{\epsilon}(x) \int_{0}^{\infty} p(0,x;t,z) dt \, dz.$$
(3.7)

By Theorem 2.6, $\Delta^{\alpha/2}g_{\epsilon} = \frac{1}{\epsilon^{\alpha}}\varphi_{\epsilon}, 0 < \epsilon \leq 1$. We now claim that

$$\sup_{x} \epsilon^{\alpha} |g_{\epsilon}(x)| \to 0 \text{ as } \epsilon \downarrow 0.$$
(3.8)

Putting $s = t/\epsilon^{\alpha}$ in (3.7) and as $|\varphi_{\epsilon}(\cdot)| \leq 1$ we get

$$\begin{split} \epsilon^{\alpha} |g_{\epsilon}(x)| &\leq \epsilon^{\alpha} \int_{0}^{1} \int_{\mathbb{R}^{d}} p(0, x; \epsilon^{\alpha} s, z) dz \ ds \\ &+ \epsilon^{\alpha} \int_{\mathbb{R}^{d}} |\varphi_{\epsilon}(z)| \int_{1}^{\infty} p(0, x; \epsilon^{\alpha} s, z) ds \ dz \\ &= I_{1}(x; \epsilon) + I_{2}(x; \epsilon). \end{split}$$

As $p(0, x; \epsilon^{\alpha} s, \cdot)$ is a probability density $\sup_{x} |I_1(x; \epsilon)| \leq \epsilon^{\alpha} \to 0$. As φ is integrable, by (2.11)

$$\begin{split} \sup_{x} |I_{2}(x;\epsilon)| &\leq \epsilon^{\alpha} \int_{\mathbb{R}^{d}} |\varphi_{\epsilon}(z)| \int_{1}^{\infty} C\left(\frac{1}{\epsilon^{\alpha}s}\right)^{d/\alpha} ds \ dz \\ &= C \epsilon^{\alpha-d} \int_{\mathbb{R}^{d}} \varphi(\frac{1}{\epsilon}z) dz = C \epsilon^{\alpha} \int_{\mathbb{R}^{d}} \varphi(z) dz \\ &= \hat{C} \epsilon^{\alpha} \to 0 \end{split}$$

whence (3.8) follows.

We next show that

$$\sup_{x} \epsilon^{\alpha} |\nabla g_{\epsilon}(x)| \to 0 \text{ as } \epsilon \downarrow 0.$$
(3.9)

By Theorem 2.6, and putting $s = t/\epsilon^{\alpha}$ gives

$$\begin{aligned} \frac{\partial}{\partial x_i} g_{\epsilon}(x) &= \int_{\mathbb{R}^d} -\varphi_{\epsilon,i}(z) \int_0^{\infty} p(0,x;\epsilon^{\alpha}s,z) ds \ dz \\ &= \int_{\mathbb{R}^d} -\varphi_i\left(\frac{z}{\epsilon}\right) \frac{1}{\epsilon} \int_0^{\infty} p(0,x;\epsilon^{\alpha}s,z) ds \ dz \end{aligned}$$

Since φ_i is integrable for $1 \leq i \leq d$, an argument similar to the derivation of (3.8) gives

$$\sup_{x} \epsilon^{\alpha} |\nabla g_{\epsilon}(x)| \le C \ \epsilon^{\alpha - 1} \to 0 \text{ as } \epsilon \downarrow 0$$

because $\alpha > 1$; this proves (3.9).

Now applying Ito's formula to $\epsilon^{\alpha}g_{\epsilon}(Z^{(0,x)}(\cdot))$, denoting $Z^{(0,x)}(\cdot)$ by $Z(\cdot), Y^{(0,x)}(\cdot)$ by $Y(\cdot)$ and taking expectations we get

$$E[\epsilon^{\alpha}g_{\epsilon}(Z(t)) - \epsilon^{\alpha}g_{\epsilon}(x)] = E \int_{0}^{t} \varphi_{\epsilon}(Z(r))dr$$
$$+E \int_{0}^{t} \langle R(u, Y(u-), Z(u-))\epsilon^{\alpha} \nabla g_{\epsilon}(Z(u)), dY(u) \rangle.$$
(3.10)

By (3.8) l.h.s. of (3.10) tends to zero as $\epsilon \to 0$. As R is bounded, Proposition 3.2 and (3.9) imply that the last term in (3.10) goes to zero as $\epsilon \to 0$. Finally, as $|\varphi_{\epsilon}(\cdot)| \leq 1$, (3.6) and (3.10) now imply (3.5).

Remark 3.4. A function φ as indicated in the proof of the preceding theorem can, for example, be obtained as follows. Let H_1 be a closed set with smooth boundary such that $\partial D \subset \text{Int}(H_1) \subset H_1 \subset \text{Int}(H), \epsilon H_1 \subset H_1$ for $0 \leq \epsilon \leq$ $1, \lambda_d(H_1) < \infty$ where λ_d denotes the *d*-dimensional Lebesgue measure. Take $\varphi(z) = 0, z \notin H$ and

$$\varphi(z) = e \exp\left\{-\frac{1}{1 - \exp\left[-\left(\frac{1}{z_1^2} + \ldots + \frac{1}{z_d^2}\right)\right]}\right\}, z \in H_1;$$

 φ can be extended as required.

Using Theorem 3.3 we now improve on it!

Theorem 3.5. Assume (A1) - (A3), $1 < \alpha < 2$. Then for $s \ge 0, x \in \overline{D}, t > s$

$$P(Z^{(s,x)}(t) \in \partial D) = 0. \tag{3.11}$$

Proof: Let $\zeta(z) = K \exp\left\{-\left(\frac{1}{z_1^2} + \dots + \frac{1}{z_d^2}\right)\right\}$, where K > 2 $h(r) = \left\{\begin{array}{ll} e \ \exp\left\{-\frac{1}{1-r^2}\right\} &, \ |r| \le 1\\ 0 &, \ |r| \ge 1 \end{array}\right.$

For $\epsilon > 0$ define $f_{\epsilon}(z) = h(\zeta(z/\epsilon)), z \in \mathbb{R}^d$. Clearly $f_{\epsilon} \in C_b^2(\mathbb{R}^d)$ and $\partial f_{\epsilon}(z)/\partial z_i = 0$ for any $z \in \partial D, 1 \leq i \leq d$. It is not difficult to see that

$$\lim_{\epsilon \downarrow 0} f_{\epsilon}(z) = 1_{\partial D}(z), z \in \mathbb{R}^d$$
(3.12)

(for $z \notin \partial D$ note that $z_i > c$ for all *i* for some c > 0; hence $\zeta(z/\epsilon) > 1$ for all small ϵ). Next, an argument as in Lemma 2.1 gives for $\epsilon > 0$

$$\sup_{z} |\Delta^{\alpha/2} f_{\epsilon}(z)| \le \frac{C_1}{\alpha} + \frac{C_2}{(2-\alpha)} \frac{1}{\epsilon^2}$$
(3.13)

for suitable constants C_1, C_2 .

Now we claim that for $z \in \overline{D} \setminus \partial D$,

$$\Delta^{\alpha/2} f_{\epsilon}(z) \to 0 \text{ as } \epsilon \downarrow 0.$$
(3.14)

Indeed let $z \notin \partial D$; there exist $r_0 > 0, c > 0$ such that $(z_i + \xi_i) > c, 1 \le i \le d$ for $|\xi| < r_0$. Choose $\epsilon_0 > 0$ so that for all $\epsilon < \epsilon_0, \zeta((z+\xi)/\epsilon) > K \exp\{-d\epsilon^2/c^2\} > 1$ for $|\xi| < r_0$. Therefore $f_{\epsilon}(z+\xi) = 0 = f_{\epsilon}(z)$ for all $|\xi| < r_0, \epsilon < \epsilon_0$ and hence

$$\Delta^{\alpha/2} f_{\epsilon}(z) = \int_{|\xi| > r_0} f_{\epsilon}(z+\xi) \frac{1}{|\xi|^{d+\alpha}} d\xi.$$
 (3.15)

Since $\frac{1}{|\xi|^{d+\alpha}} \mathbf{1}_{(r_0,\infty)}(|\xi|)$ is integrable and $\lambda_d(\partial D) = 0$, by (3.12), (3.15) now the claim (3.14) follows.

To prove the theorem we consider only the case s = 0. Denote $Z^{(0,x)}(\cdot), Y^{(0,x)}(\cdot)$ by $Z(\cdot), Y(\cdot)$. We want to prove that for $x \in \overline{D}, t > 0$,

$$\lim_{\epsilon \downarrow 0} E \int_{0}^{t} \Delta^{\alpha/2} f_{\epsilon}(Z(r)) dr = 0.$$
(3.16)

By Theorem 3.3 and (3.13) for each $\epsilon > 0$,

$$E\int_{0}^{t} 1_{\partial D}(Z(r))\Delta^{\alpha/2}f_{\epsilon}(Z(r))dr = 0.$$
(3.17)

For c > 0, put $D_c = (2c, \infty)^d$. In view of (3.17), to prove (3.16) it is enough to prove that

$$\lim_{\epsilon \downarrow 0} E \int_{0}^{t} \mathbb{1}_{D_{c}}(Z(u)) \Delta^{\alpha/2} f_{\epsilon}(Z(u)) du = 0$$
(3.18)

for any fixed c > 0. If $z \in D_c$, $|\xi| < c$ note that $z_i + \xi_i > c, 1 \le i \le d$. So one can choose $\epsilon_0 > 0$ such that $f_{\epsilon}(z + \xi) = 0$ for all $|\xi| < c, z \in D_c, \epsilon < \epsilon_0$. Hence for any $\epsilon < \epsilon_0$

$$|1_{D_c}(Z(u))\Delta^{\alpha/2}f_{\epsilon}(Z(u))| \leq \int\limits_{|\xi|>c} \frac{1}{|\xi|^{d+\alpha}}d\xi \leq C\frac{1}{\alpha c^{\alpha}}.$$

The required assertion (3.18) and hence (3.16) now follows by (3.14) and dominated convergence theorem.

Now to prove (3.11) (with s = 0), first consider the case $x \notin \partial D$. Since $\partial f_{\epsilon}(\cdot)/\partial z_i = 0$ on ∂D , and $Y(\cdot)$ can increase only when $Z(\cdot) \in \partial D$, by Ito's formula

$$E[f_{\epsilon}(Z(t))] - f_{\epsilon}(x) = E \int_{0}^{t} \Delta^{\alpha/2} f_{\epsilon}(Z(r)) dr.$$

By (3.12), (3.16) letting $\epsilon \downarrow 0$ in the above we get (3.11).

Next let $x \in \partial D$; for c > 0 let $\eta \equiv \eta_c^{(x)} = \inf\{r \ge 0 : Z(r) \in \overline{D}_c\}$. By strong Markov property and the preceding case

$$E[1_{[0,t]}(\eta)1_{\partial D}(Z(t))] = 0.$$

Note that $\{\eta_c^{(x)} \leq t\} \uparrow \Omega$ (modulo null set) as $c \downarrow 0$; otherwise we will get a contradiction to Theorem 3.3. Letting $c \downarrow 0$ in the above we get the required conclusion. This completes the proof.

Note: It may be interesting to compare the proofs of Theorems 3.3, 3.5 with those of their analogues for reflected Brownian motion given in [6].

In the following $\nabla_2 p(r, y; t, z) = \nabla_2 p(r, \cdot; t, z)$, $\Delta_2^{\alpha/2} p(r, y; t, z) = \Delta_2^{\alpha/2} p(r, \cdot; t, z)$ denote respectively the operators $\nabla, \Delta^{\alpha/2}$ applied as function of *y*-variables. Our main result is

Theorem 3.6. Assume (A1) - (A3); let $1 < \alpha < 2$. For $0 \le s < t < \infty, x \in \overline{D}, z \in D$ define

$$p^{R}(s, x; t, z) = p(s, x; t, z) + E \int_{s}^{t} \langle R(u, Y(u-), Z(u-)) \nabla_{2} p(u, Z(u); t, z), dY(u) \rangle$$
(3.19)

where $Y(\cdot) = Y^{(s,x)}(\cdot), Z(\cdot) = Z^{(s,x)}(\cdot)$. For $0 \le s < t, x \in \overline{D}, z \in \partial D$ take $p^{R}(s,x;t,z) = 0$. Then (i) p^{R} is continuous on $\{0 \le s < t < \infty, x \in \overline{D}, z \in D\}$, it is also differntiable in (t,z); (ii) for any Borel set $A \subseteq \overline{D}, s < t, x \in \overline{D}$

$$P(Z^{(s,x)}(t) \in A) = \int_{A} p^{R}(s,x;t,z)dz.$$
(3.20)

In case R is independent of y-variables, p^R is the transition probability density function of the Markov process $Z(\cdot)$.

We need a lemma

Lemma 3.7. Hypotheses and notation as in the Proposition 3.2. If $(s_n, x_n) \to (s, x)$ then for a.a. ω , for T > s

$$var\left(Y^{(s_n,x_n)}(\cdot,\omega) - Y^{(s,x)}(\cdot,\omega);[s,T]\right) \to 0$$

$$\sup_{s \le t \le T} |Z^{(s_n,x_n)}(t,\omega) - Z^{(s,x)}(t,\omega)| \to 0$$

Proof: Denote $Z^{(n)}(\cdot) = Z^{(s_n,x_n)}(\cdot), Y^{(n)}(\cdot) = Y^{(s_n,x_n)}(\cdot), Z(\cdot) = Z^{(s,x)}(\cdot),$ $Y(\cdot) = Y^{(s,x)}(\cdot).$ We first consider the case $s_n < s$ for all n. Clearly $Z^{(n)}(t,\omega),$ $Y^{(n)}(t,\omega), t \ge s$ is the solution to the Skorokhod problem corresponding to $Z^{(n)}(s,\omega) + B(\cdot,\omega) - B(s,\omega).$ For any T > s note that

$$\operatorname{var} \left([B(\cdot,\omega) - B(s,\omega) + Z^{(n)}(s,\omega)] - [B(\cdot,\omega) - B(s,\omega) + x]; [s,T] \right)$$
$$= |Z^{(n)}(s,\omega) - x|.$$

For any ω such that $B(\cdot, \omega)$ is continuous at s we have $x_n + B(s, \omega) - B(s_n, \omega) \rightarrow x$. Boundedness of R and (3.4) imply

$$\left| \int_{s_n}^s R(u, Y^{(n)}(u-), Z^{(n)}(u-)) dY^{(n)}(u, w) \right| \to 0 \text{ as } n \to \infty.$$

Thus $|Z^{(n)}(s,\omega) - x| \to 0$, and hence the result follows by Proposition 3.9 of [11].

Next let $s_n > s$ for all n. For any $n, Z(t, \omega), Y(t, \omega), t \ge s_n$ is the solution to the Skorokhod problem corresponding to $Z(s_n, \omega) + B(\cdot, \omega) - B(s_n, \omega)$. Clearly

$$\operatorname{var} \left([x_n + B(\cdot, \omega) - B(s_n, \omega)] - [Z(s_n, \omega) + B(\cdot, \omega) - B(s_n, \omega)] \right); [s_n, T] \right)$$
$$= |Z(s_n, \omega) - x_n|.$$

So by the arguments as in [11]

$$\operatorname{var} \left(Y^{(n)}(\cdot,\omega) - Y(\cdot,\omega); [s_n,T] \right) \leq C |Z(s_n,\omega) - x_n|$$
$$\sup_{s_n \leq t \leq T} |Z^{(n)}(t,\omega) - Z(t,\omega)| \leq C |Z(s_n,\omega) - x_n|.$$

Note that for $s \leq t \leq s_n$ we may take $Z^{(n)}(t,\omega) = x_n, Y^{(n)}(t,\omega) = 0$. Clearly var $(Y(\cdot,\omega); [s,s_n]), \sup_{s \leq t \leq s_n} |x_n - Z(t,\omega)|, |Z(s_n,\omega) - x_n|$ all tend to 0 as $s_n \to s$ by right continuity. The required conclusion is now immediate.

Proof of Theorem 3.6: Since $dY^{(s,x)}(\cdot)$ can charge only when $Z^{(s,x)}(\cdot) \in \partial D$ and $d(z, \partial D) > 0$ for $z \notin \partial D$, well definedness of (3.19) follows from (2.12) and Proposition 3.2.

Assertion (i) now follows from properties of p (viz. (2.11), (2.12), Proposition 2.4), boundedness and continuity of R and Lemma 3.7.

To prove assertion (ii), in view of Theorem 3.5, it is enough to establish (3.20) when $A \subset D$.

Fix t > s; let $\epsilon > 0$. Apply Ito's formula to $p(r, Z^{(s,x)}(r); t, z), s \le r \le (t - \epsilon)$ corresponding to the semimartingale $Z^{(s,x)}(\cdot)$ and use Theorem 2.5 to get

$$p(t-\epsilon, Z(t-\epsilon); t, z) = p(s, x; t, z) + \int_{s}^{t-\epsilon} \langle R(r, Y(r-), Z(r-)) \nabla_2 p(r, Z(r); t, z), dY(r) \rangle + \text{a stochastic integral.}$$
(3.21)

Let f be a continuous function with compact support $K \subset D$. By (3.21) for any $\epsilon > 0$

$$E \int_{D} f(z)p(t-\epsilon, Z(t-\epsilon); t, z)dz = \int_{D} f(z)p(s, x; t, z)dz$$
$$+E \int_{D} f(z) \int_{s}^{t-\epsilon} \langle R(r, Y(r-), Z(r-))\nabla_{2}p(r, Z(r); t, z), dY(r)\rangle dz \qquad (3.22)$$

For any ω , note that $p(t - \epsilon, Z(t - \epsilon, \omega); t, z)dz \Rightarrow \delta_{Z(t-,\omega)}(dz)$ as $\epsilon \downarrow 0$. And since $P(Z(t) \neq Z(t-)) = 0$ it now follows that

$$\lim_{\epsilon \downarrow 0} [\text{l.h.s. of } (3.22)] = E[f(Z^{(s,x)}(t))].$$
(3.23)

As $d(K, \partial D) > 0$, by (2.12), Proposition 3.2 and boundedness of $f(\cdot), R(\cdot)$

$$\lim_{\epsilon \downarrow 0} [r.h.s. \text{ of } (3.22)] = \int_{D} f(z) p^{R}(s, x; t, z) dz.$$
(3.24)

Thus

$$\int_{D} f(z)p^{R}(s,x;t,z)dz = E[f(Z^{(s,x)}(t))]$$
(3.25)

for any continuous function f with compact support in D.

Next for any open set $F \subset D$, let $\{f_n\}$ be a sequence of continuous functions with compact support in D such that $f_n \uparrow 1_F$ pointwise. Clearly

$$\lim_{n \to \infty} E[f_n(Z^{(s,x)}(t))] = E[1_F(Z^{(s,x)}(t))].$$
(3.26)

Taking expectation in (3.21) and letting $\epsilon \downarrow 0$ we get

$$p^{R}(s,x;t,z) = \lim_{\epsilon \downarrow 0} E[p(t-\epsilon,Z(t-\epsilon);t,z)] \ge 0.$$

Therefore by monotone convergence theorem

$$\lim_{n \to \infty} \int_{D} f_n(z) p^R(s, x; t, z) dz = \int_{D} 1_F(z) p^R(s, x; t, z) dz.$$
(3.27)

Now (3.25), (3.26), (3.27) imply that (3.20) holds for any open $F \subset D$, and hence for any Borel set $A \subset D$.

Finally, the last assertion is immediate from (ii); this completes the proof. \Box

We conclude with the following questions.

- 1. Can $(x, z) \mapsto p^R(s, x; t, z)$ given by (3.19) be extended continuously to $\overline{D} \times \overline{D}$?
- 2. Is $p^{R}(s, x; t, z) > 0$ for $s < t, x, z \in D$?
- 3. When is p^R symmetric in x, z?

Acknowledgement: The authors thank B. Rajeev and S. Thangavelu for some useful discussions; and Siva Athreya for bringing [1] to their notice while the work was in progress.

S. Ramasubramanian
StatMath. Unit
Indian Statistical Institute
8th Mile Mysore Road
Bangalore - $560\ 059$

Bibliography

- [1] R. Atar and A. Budhiraja : Stability properties of constrained jumpdiffusion processes. *Preprint*, 2001.
- [2] S. Balaji and S. Ramasubramanian : Asymptotics of reflecting diffusions in an orthant. *Proc. Internat. Conf. Stochastic Processes*, December'96, pp. 57-81. Cochin University of Science and Technology, Kochi, 1998.
- [3] I. Bardhan : Further applications of a general rate conservation law. *Stochastic Process. Appl.* **60** (1995) 113-130.
- [4] K. Bogdan : The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997) 43-80.
- [5] K. Bogdan and T. Byczkowski : Potential theory for the α -stable Schrodinger operator on bounded Lipschitz domains. *Studia Math.* **133** (1999) 53-92.
- [6] J. M. Harrison and R. J. Williams : Brownian models of open queueing networks with homogeneous customer populations. *Stochastics* 22 (1987) 77-115.
- [7] N. Ikeda and S. Watanabe : *Stochastic differential equations and diffusion processes*. North-Holland, Amsterdam, 1981.
- [8] K. Ito: *Lectures on Stochastic Processes.* Tata Institute of Fundamental Research, Bombay, 1961.

- [9] O. Kella : Concavity and reflected Lévy process. J. Appl. Probab. 29 (1992) 209-215.
- [10] S. Ramasubramanian : Transition densities of reflecting diffusions. Sankhya Ser. A 58 (1996) 347-381.
- [11] S. Ramasubramanian : A subsidy-surplus model and the Skorokhod problem in an orthant. *Math. Oper. Res.* **25** (2000) 509-538.
- [12] S. Ramasubramanian : Reflected backward stochastic differential equations in an orthant. *Proc. Indian Acad. Sci. (Math. Sci.)* **112** (2002) 347–360.
- [13] G. Samorodnitsky and M. S. Taqqu : Stable non-gaussian random processes : stochastic models with infinite variance. Chapman and Hall, New York, 1994.
- [14] W. Whitt : An overview of Brownian and non-Brownian FCLT's for the single-server queue. *Queueing Systems Theory Appl.* **36** (2000) 39-70.