PERIODIC SOLUTIONS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MULTIPLE STATE-DEPENDENT TIME LAGS

John Mallet-Paret¹ — Roger D. Nussbaum² — Panagiotis Paraskevopoulos³

Dedicated to Jean Leray

0. Introduction

Suppose that $h: \mathbb{R}^2 \to \mathbb{R}$ satisfies a "negative feedback condition": $h(\xi_0, \xi_1) < 0$ if $\xi_0 \geq 0$ and $\xi_1 > 0$ and $h(\xi_0, \xi_1) > 0$ if $\xi_0 \leq 0$ and $\xi_1 < 0$. Let $r: \mathbb{R} \to [0, M]$ be a locally Lipschitz map with $r(0) = \tau_0 > 0$. Consider the differential-delay equation

$$(0.1) x'(t) = h(x(t), x(t - r(x(t)))).$$

Under further natural hypotheses it has been proved in [12] and [13] that equation (0.1) has a "slowly oscillating periodic solution" or "SOP solution" (see Definition 3.1 in Section 3 below).

More generally, suppose that $h: \mathbb{R}^{m+1} \to \mathbb{R}$ satisfies a negative feedback condition analogous to that above. For $1 \leq j \leq m$, let $r_j: \mathbb{R} \to [0, M]$ be a locally Lipschitz map. Assume (and this is crucial) that $r_j(0) = \tau_0$ for $1 \leq j \leq m$.

¹Partially supported by National Science Foundation Grant NSF-DMS-93-10328, by Army Research Office Contract ARO-DAAH04-93-G-0198, and by Office of Naval Research Contract ONR-NOOO14-92-G-0198.

²Partially supported by National Science Foundation Grant NSF-DMS-91-05930.

³Partially supported by National Science Foundation Grant NSF-DMS-93-10328.