Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 3, 1994, 69–80

HEAT CONTENT ASYMPTOTICS OF NON-MINIMAL OPERATORS

PETER B. GILKEY¹

Dedicated to Jean Leray

0. Introduction

Let M be a compact smooth Riemannian manifold of dimension m with smooth boundary ∂M . Let V be a smooth unitary vector bundle over M and let P be a second order partial differential operator on $C^{\infty}(V)$ with positive definite leading symbol. We impose suitable boundary conditions \mathcal{B} for P and assume $P_{\mathcal{B}}$ is strongly elliptic and self-adjoint. Let $f \in C^{\infty}(V)$. To study the short time behavior of the fundamental solution to the heat equation $e^{-tP_{\mathcal{B}}}f$, we introduce an auxiliary smooth test function $\widetilde{f} \in C^{\infty}(V)$ and define

$$\beta(f,\widetilde{f},P,\mathcal{B})(t) := \int_{M} (e^{-tP_{\mathcal{B}}}f,\widetilde{f}) \, dx.$$

Standard elliptic methods, see for example the discussion in [9, Lemma 1.3] show that as $t\downarrow 0^+$ there is an asymptotic series of the form

(0.2)
$$\beta(f, \widetilde{f}, P, \mathcal{B})(t) \sim \sum_{n=0}^{\infty} \beta_n(f, \widetilde{f}, P, \mathcal{B}) t^{n/2}.$$

 $^{^1\}mathrm{Research}$ partially supported by the NSF (USA), by the MPIM (Bonn, FRG), and by the DaeWoo foundation (Korea).