Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 3, 1994, 235–256

A PRIORI ESTIMATES FOR THE GRADIENT OF THE SOLUTION TO THE SYSTEM OF VISCOELASTICITY IN SEVERAL DIMENSIONS

PIOTR RYBKA

Dedicated to Jean Leray

1. Introduction

The aim of this note is to study a priori estimates for the gradient of strong solutions u to the system of viscoelasticity

(1)
$$u_{tt} = \operatorname{div} (\sigma(\nabla u) + \nabla u_t), \quad u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x),$$

on a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary; $u:\Omega \to \mathbb{R}^n$, n > 1. The main technical assumption is Lipschitz continuity of the nonlinearity and that σ is close to a linear mapping for large arguments. We consider data such that ∇u_0 is in the space of functions of bounded mean oscillation (BMO) or u_0 , u_1 are spherically symmetric and ∇u_0 is essentially bounded. For the definition of BMO we refer the reader to Section 2 or to the original paper [13].

One can hope for such estimates because of a hidden parabolic structure of (1). Its parabolic structure may be made transparent after a diagonalization procedure (cf. [14]–[16]): the introduction of new variables P, Q,

$$\operatorname{div} P = u_t, \qquad Q = \nabla u - P,$$

This research has been done with partial support of KBN, grant number 2 P301 017 05. I would like to thank my colleagues Nick Firoozye, Stefan Müller and Vladimir Šverak for stimulating discussions. Last but not least, I would like to thank Universität Bonn for hospitality; part of this research has been done there.