A MASLOV-TYPE INDEX THEORY FOR SYMPLECTIC PATHS

YIMING LONG

(Submitted by K. Gęba)

1. Introduction

In this paper, we extend the Maslov-type index theory defined in [7], [15], [10], and [18] to all continuous degenerate symplectic paths, give a topological characterization of this index theory for all continuous symplectic paths, and study its basic properties.

Suppose $\tau > 0$. We consider an τ -periodic symmetric continuous $2n \times 2n$ matrix function B(t), i.e. $B \in C(S_{\tau}, \mathcal{L}_s(\mathbb{R}^{2n}))$ with $S_{\tau} = \mathbb{R}/(\tau\mathbb{Z}), \mathcal{L}(\mathbb{R}^{2n})$ being the set of all real $2n \times 2n$ matrices, and $\mathcal{L}_s(\mathbb{R}^{2n})$ being the subset of all symmetric matrices. It is well-known that the fundamental solution γ of the linear first order Hamiltonian system

(1.1)
$$\dot{y} = JB(t)y, \quad y \in \mathbb{R}^{2n},$$

yields a path in the symplectic group $\operatorname{Sp}(2n) = \{M \in \mathcal{L}(\mathbb{R}^{2n}) \mid M^T J M = J\}$ starting from the identity matrix, where $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, I_n is the identity matrix on \mathbb{R}^n . When there is no confusion we shall omit the subindex n of I_n . Define $\operatorname{Sp}(2n)^0 = \{M \in \operatorname{Sp}(2n) \mid \det(M - I) = 0\}$ and $\operatorname{Sp}(2n)^* = \operatorname{Sp}(2n) \setminus \operatorname{Sp}(2n)^0$. In order to study such problems, we introduce the following families of paths in

47

¹⁹⁹¹ Mathematics Subject Classification. 58F05, 58E05, 34C25.

 $Key\ words\ and\ phrases.$ Maslov-type index, paths, topology, symplectic group, Hamiltonian systems.

Partially supported by the NNSF and MCSEC of China and Qiu Shi Sci. Tech. Foundation.

^{©1997} Juliusz Schauder Center for Nonlinear Studies