Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 10, 1997, 15–45

MULTIPLE POSITIVE SOLUTIONS FOR SOME NONLINEAR ELLIPTIC SYSTEMS

Kazunaga Tanaka

0. Introduction

In this paper we study, via variational methods, the existence and multiplicity of positive solutions of the following systems of nonlinear elliptic equations:

(0.1)
$$k_1 \Delta u + V_u(u, v) = 0 \quad \text{in } \Omega,$$

(0.2)
$$k_2\Delta v + V_v(u,v) = 0 \quad \text{in } \Omega,$$

(0.3)
$$\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 \quad \text{on } \partial\Omega,$$

(0.4)
$$u(x) > 0, \quad v(x) > 0 \quad \text{ in } \Omega,$$

where $k_1, k_2 > 0$ are positive constants, $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary $\partial\Omega$ and $V(u, v) \in C^2(\mathbb{R}^2, \mathbb{R})$. We refer to [CdFM], [CM], [dFF], [dFM] and [HvV] for variational study of such elliptic systems. However, it seems that the multiplicity of positive solutions for such elliptic systems is not well studied.

Here, we study a case related to some models (with diffusion) in mathematical biology, ecology, etc., and we consider the case where (0.1)-(0.3) have 4 constant non-negative solutions (0,0), (a,0), (0,b), $(u_0,v_0) \in \mathbb{R}^2$ $(a, b, u_0, v_0 > 0)$, that is, solutions of $V_u(u,v) = V_v(u,v) = 0$, and 2 constant solutions (a,0), (0,b) are

15

¹⁹⁹¹ Mathematics Subject Classification. 35J50.

Partially supported by Waseda University Grant for Special Research Projects 96A-125.

 $[\]textcircled{O}1997$ Juliusz Schauder Center for Nonlinear Studies