FOURIER TRANSFORMS AND THEIR LIPSCHITZ CLASSES

G. SAMPSON AND H. TUY

We define a class of functions A_{α} for each $\alpha > 0$. We show that the Fourier transform of every function of A_{α} exists and is Lipschitz of order α . We construct examples to show that the converse is not true in general. However, we show that for a certain class of function k (e.g., $k \in L_2$) if its Fourier transform \hat{k} is Lipschitz of order α then $k \in A_{\beta}$ for all $\beta < \alpha$.

Boas ([1] and [2]) studied this problem in the case where the function k is nonnegative and gave a complete solution in this case. In connection with this question several authors (e.g. Hirschman [5]; Liang Shin Hahn [4], Drobot, Naparstek and Sampson [3]) have proved mapping properties of convolution operators with kernel k, by studying the behavior of \hat{k} . To be more precise, they have proved mapping theorems when $\hat{k} \in \text{Lip}(\alpha)$ with additional conditions on k. In our applications we prove a similar result (see §3, Theorem 4).

Notations and Definitions.

 L_{loc} shall denote the set of all Lebesgue measurable functions integrable over all finite intervals. In this paper, the functions $f, g, k, \dots \in L_{\text{loc}}$.

For $0 < \alpha \leq 1$, a function f is Lipschitz of order α $(f \in \text{Lip}(\alpha))$ if there is a positive constant A such that

$$\sup_{x\in\mathbb{R}}|f(x+h)-f(x)|\leq A|h|^{\alpha}.$$

For $\alpha > 1$, we say that a function f is Lipschitz of order α if

(i) $f^{(m)} \in L_{\infty}$ for all $m < [\alpha]$ and

(ii) $f^{(\alpha)} \in \operatorname{Lip}(\alpha - [\alpha]).$

When we use the symbol

$$\int_a^b g(t,x)dt \quad \text{for} \quad -\infty \leq a < b \leq \infty.$$

We are assuming that $g(t, x) \in L_{loc}$ as a function of t for each x and moreover the integral exists in the following sense:

(0)
$$\int_{a}^{b} g(t,x)dt = \lim_{\substack{\alpha \to a \\ \beta \to b}} \int_{\alpha}^{\beta} g(t,x)dt$$