REGULAR SEQUENCES AND LIFTING PROPERTY

M. HERRMANN AND R. SCHMIDT

Let A be a commutative noetherian ring, E a finite A-module and let M be an arbitrary A-module. Let $\varphi: E \to M$ be a homomorphism of A-modules.

In this note we prove in an elementary way that an M-sequence $\underline{x} = (x_1, \dots, x_n)$ being taken to lie in the (Jacobson-) radical rad(A) of A, is also an E-sequence if $\underline{x}E$ is the contraction $\varphi^{-1}(\underline{x}M)$ of $\underline{x}M$ in E.

As a corollary of this lifting property we obtain very easily the so-called delocalization-lemma for regular sequences (also [2], Cor. 1 for local rings A and [4] Chap. I, §4). Then we exemplify that the condition $\varphi^{-1}(\underline{x}M) = \underline{x}E$ is not necessary for the statement of our theorem (see Example 3); otherwise it is easily seen that generally the theorem (especially Corollary 2) becomes false without any additional condition (see Examples 1 and 2).

Recall that a sequence x_1, \dots, x_n of elements of A is said to be (*M*-regular or) an *M*-sequence if, for each $0 \le i \le n - 1$, a_{i+1} is a non-zerodivisor on $M/(x_1, \dots, x_i)M$ and $M \ne (x_1, \dots, x_n)M$.

2. First we consider the case n = 1.

LEMMA. The notations being as above. Let x be a M-regular element in the radical rad(A) of A and suppose that

(1) $\ker \varphi \subseteq xE^1.$

Then x is an E-regular element too and φ is injective.

Proof. We put $F = \ker \varphi$. Clearly x is E/F-regular, hence $xE \cap F = xF$, hence F = xF by (1). Therefore we get F = 0 by Nakayama's lemma, hence φ is injective and x is E-regular.

THEOREM. Let E be a finite A-module, M an arbitrary A-module and $\varphi: E \to M$ a module-homomorphism. Let $\underline{x} = (x_1, \dots, x_n)$ be an M-sequence in rad(A) and suppose that

¹ We denote by xE or xE the product (x)E or (x)E respectively, where (x) or (x) is the ideal generated by x or x_1, \dots, x_n respectively.