A THEOREM ON THE REPRESENTATION THEORY OF JORDAN ALGEBRAS

W. H. MILLS

1. Introduction. Let J be a Jordan algebra over a field Φ of characteristic neither 2 nor 3. Let $a \longrightarrow S_a$ be a (general) representation of J. If α is an algebraic element of J, then S_{α} is an algebraic element. The object of this paper is to determine the polynomial identity* satisfied by S_{α} . The polynomial obtained depends only on the minimal polynomial of α and the characteristic of Φ . It is the minimal polynomial of S_{α} if the associative algebra U generated by the S_a is the universal associative algebra of J and if J is generated by α .

2. Preliminaries. A (nonassociative) commutative algebra J over a field Φ is called a *Jordan algebra* if

$$(1) \qquad (a^2b)a = a^2(ba)$$

holds for all $a, b \in J$. In this paper it will be assumed that the characteristic of Φ is neither 2 nor 3.

It is well known that the Jordan algebra J is power associative; ** that is, the subalgebra generated by any single element a is associative. An immediate consequence is that if f(x) is a polynomial with no constant term then f(a) is uniquely defined.

Let R_a be the multiplicative mapping in J, $a \rightarrow xa = ax$, determined by the element a. From (1) it can be shown that we have

$$[R_a R_{bc}] + [R_b R_{ac}] + [R_c R_{ab}] = 0$$

and

$$R_a R_b R_c + R_c R_b R_a + R_{(ac)b} = R_a R_{bc} + R_b R_{ac} + R_c R_{ab}$$

for all a, b, $c \in J$, where [AB] denotes AB - BA. Since the characteristic of Φ is not 3, either of these relations and the commutative law imply (1). Let

Received November 20, 1950.

^{*} This problem was proposed by N. Jacobson.

^{**}See, for example, Albert [1].

Pacific J. Math. 1 (1951), 255-264.