VOLUME IN TERMS OF CONCURRENT CROSS-SECTIONS

HERBERT BUSEMANN

1. Of the two expressions

$$|M| = \frac{1}{2} \int_0^{2\pi} r^2(\omega) d\omega = \frac{1}{2} \int_0^{2\pi} \left(\int_{-r(\omega - \pi/2)}^{r(\omega + \pi/2)} |\rho| d\rho \right) d\omega$$

for the area |M| of a plane domain M, given in polar coordinates ρ , ω by the inequalities $0 \le \rho \le r(\omega)$, $0 \le \omega \le 2\pi$, the first has the well-known extension

(1)
$$|M| = \frac{1}{n} \int_{\Omega_n} r^n(u) d\omega_u^n$$

to *n* dimensions. Here Ω_n is the surface of the unit sphere in the *n*-dimensional Euclidean space, $d\omega_u^n$ is its area element at the point *u*, and *M* is given by $0 \le \rho \le r(u)$, $u \in \Omega_n$.

In the second expression, $|\rho|$ may be interpreted as (1-dimensional) volume of the simplex with one vertex at the origin z and the other at a variable point $p=(\rho,\,\omega\pm\pi/2)$ in the cross-section of M with the line normal to ω . The purpose of the present note is the proof and the application of the following extension of this second expression to n-1 sets $M_1,\,\cdots,\,M_{n-1}$ in E_n :

$$(2) \quad |M_1| \cdots |M_{n-1}|$$

$$=\frac{(n-1)!}{2}\int_{\Omega_n}\left(\int_{M_1(u)}\cdots\int_{M_{n-1}(u)}T(p_1,\cdots,p_{n-1},z)dV_{p_1}^{n-1}\cdots dV_{p_{n-1}}^{n-1}\right)d\omega_u^n.$$

Here $M_j(u)$ is the cross-section of M_j with the hyperplane H(u) through z normal to the unit vector u, the point p_j varies in $M_j(u)$, the differential $dV_{p_j}^{n-1}$ is the ((n-1)-dimensional) volume element of $M_j(u)$ at p_j , and $T(p_1, \dots, p_{n-1}, z)$ is the volume of the simplex with vertices p_1, \dots, p_{n-1}, z .