VOLUME IN TERMS OF CONCURRENT CROSS-SECTIONS

Herbert Busemann

1. Of the two expressions

$$
|M|=\frac{1}{2} \int_{0}^{2 \pi} r^{2}(\omega) d \omega=\frac{1}{2} \int_{0}^{2 \pi}\left(\int_{-r(\omega-\pi / 2)}^{r(\omega+\pi / 2)}|\rho| d \rho\right) d(\cdot)
$$

for the area $|M|$ of a plane domain M, given in polar coordinates ρ, ω by the inequalities $0 \leq \rho \leq r(\omega), 0 \leq \omega \leq 2 \pi$, the first has the well-known extension

$$
\begin{equation*}
|M|=\frac{1}{n} \int_{\Omega_{n}} r^{n}(u) d \omega_{u}^{n} \tag{1}
\end{equation*}
$$

to n dimensions. Here Ω_{n} is the surface of the unit sphere in the n-dimensional Euclidean space, $d \omega_{u}^{n}$ is its area element at the point u, and M is given by $0 \leq \rho \leq r(u), u \in \Omega_{n}$.

In the second expression, $|\rho|$ may be interpreted as (1-dimensional) volume of the simplex with one vertex at the origin z and the other at a variable point $p=(\rho, \omega \pm \pi / 2)$ in the cross-section of M with the line normal to ω. The purpose of the present note is the proof and the application of the following extension of this second expression to $n-1$ sets M_{1}, \cdots, M_{n-1} in E_{n} :
(2) $\quad\left|M_{1}\right| \cdots\left|M_{n-1}\right|$

$$
=\frac{(n-1)!}{2} \int_{\Omega_{n}}\left(\int_{M_{1}(u)} \cdots \int_{M_{n-1}(u)} T\left(p_{1}, \cdots, p_{n-1}, z\right) d V_{p_{1}}^{n-1} \cdots d V_{p_{n-1}^{n-1}}\right) d \omega_{u}^{n}
$$

Here $M_{j}(u)$ is the cross-section of M_{j} with the hyperplane $H(u)$ through z normal to the unit vector u, the point p_{j} varies in $M_{j}(u)$, the differential $d V_{p_{j}}^{n-1}$ is the ($(n-1)$-dimensional) volume element of $M_{j}(u)$ at p_{j}, and $T\left(p_{1}, \cdots, p_{n-1}, z\right)$ is the volume of the simplex with vertices $p_{1}, \cdots, p_{n-1}, z$.

Received November 19, 1951.
Pacific J. Math. 3 (1953), 1-12

