# CONVEXITY PROPERTIES OF INTEGRAL MEANS OF ANALYTIC FUNCTIONS 

H. Shniad

1. Introduction. Let $f=f(z)$ denote an analytic function of the complex variable $z$ in the open circle $|z|<R$. For each positive number $t$, the mean of order $t$ of the modulus of $f(z)$ is defined as follows:

$$
\mathbb{M}_{t}(r ; f)=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{t} d \theta\right]^{1 / t}, \quad(0 \leq r<R)
$$

The reader might consult [5, p. 143-144; 3; and 4, p. 134-146] for some of the properties of this mean value function $\mathbb{M}_{t}(r ; f)$.

We consider the question: does the analyticity in $|z|<R$ of the function $f$ imply the convexity of the mean $\mathfrak{M}_{t}(r ; f)$ as a function of $r$ in the interval $0 \leq r<$ $R$ ? It is known [1] that:
(A) Unless the function $f$ is suitably restricted, the set of positive values $t$ for which the question may be answered affirmatively has a finite upper bound.
(B) If the number $t$ is of the form $2 / k$, with $k$ a positive integer, then, for every analytic function $f$, the mean of order $t$ is convex.
( C ) If the function $f$ vanishes at the origin, then the mean $\mathbb{M}_{t}(r ; f)$ is convex for every fixed positive number $t$.
(D) If the function $f$ has no zero in the circle, then its mean of order $t$ is convex, provided that the positive number satisfies $t \leq 2$.
( E ) If the function $f$ has at most $k$ zeros, $k \geqq l$, in the circle, then the mean of order $t$ is convex provided that the positive number $t$ satisfies $t \leqq 2 / k$.

The main purpose of this paper is to prove that, for every analytic function $f$, the mean of order four is convex. Moreover, we show by example that if the number $t$ is greater than 5.66 , then there is an analytic function whose mean of order $t$ is not convex.
2. Means of nonvanishing functions. Assume that $g(z)$ is analytic in $|z|<R$,

