# THE RECIPROCITY THEOREM FOR DEDEKIND SUMS 

## L. Carlitz

1. Introduction. Let $((x))=x-[x]-1 / 2$, where $[x]$ denotes the greatest integer $\leq x$, and put

$$
\begin{equation*}
\bar{s}(h, k)=\sum_{r(\bmod k)}\left(\left(\frac{r}{k}\right)\right)\left(\left(\frac{h r}{k}\right)\right), \tag{1.1}
\end{equation*}
$$

the sumntation extending over a complete residue system $(\bmod k)$, Then if $(h, k)=1$, the $\operatorname{sum} \bar{s}(h, k)$ satisfies (see for example [4])

$$
\begin{equation*}
12 h k\{\bar{s}(h, k)+\bar{s}(k, h)\}=h^{2}+3 h k+k^{2}+1 \tag{1.2}
\end{equation*}
$$

Note that $\bar{s}(h, k)=s(h, k)+1 / 4$, where $s(h, k)$ is the sum defined in [4].
In this note we shall give a simple proof of (1.2) which was suggested by Redei's proof [5]. The method also applies to Apostol's extension [1]; [2].
2. A formula for $\bar{s}(h, k)$. We start with the easily proved formula

$$
\begin{equation*}
\left(\left(\frac{r}{k}\right)\right)=-\frac{1}{2 k}+\frac{1}{k} \sum_{s=1}^{k-1} \frac{\rho^{-r s}}{\rho^{s}-1} \quad\left(\rho=e^{2 \pi i / k}\right) \tag{2.1}
\end{equation*}
$$

which is equivalent to a formula of Eisenstein. (Perhaps the quickest way to prove (2.1) is to observe that

$$
\sum_{r=0}^{k-1}\left(\left(\frac{r}{k}\right)\right) \rho^{r s}= \begin{cases}1 /\left(\rho^{s}-1\right) \\ -1 / 2 & (k \nmid s) \\ (k \mid s)\end{cases}
$$

inverting leads at once to (2.1)).
Now substituting from (2.1) in (1.1) we get

