SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. Carlitz

1. Introduction. Using a method developed by Rademacher [5], Apostol [1] has proved a transformation formula for the function

$$
\begin{equation*}
G_{p}(x)=\sum_{m, n=1}^{\infty} n^{-p} x^{m n} \quad(|x|<1) \tag{1.1}
\end{equation*}
$$

where p is a fixed odd integer >1. The formula involves the coefficients

$$
\begin{equation*}
c_{r}(h, k)=\sum_{\mu(\bmod k)} P_{p+1-r}\left(\frac{\mu}{k}\right) P_{r}\left(\frac{h \mu}{k}\right) \quad(0 \leq r \leq p+1), \tag{1.2}
\end{equation*}
$$

where $(h, k)=1$, the summation is over a complete residue system $(\bmod k)$, and $P_{r}(x)=\bar{B}_{r}(x)$, the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies a reciprocity relation involving $c_{r}(h, k)$, which for $r=p$ reduces to Apostol's reciprocity theorem [1, Th. 1; 2, Th. 2] for the generalized Dedekind sum $c_{p}(h, k)$. In addition, we prove some formulas for $c_{r}(h, k)$ which generalize certain results proved by Rademacher and Whiteman [6]. Finally we derive a representation of $c_{r}(h, k)$ in terms of so-called "Eulerian numbers".
2. Some preliminaries. It will be convenient to recall some properties of the Bernoulli function $P_{r}(x)$; by definition, $P_{r}(x)=B_{r}(x)$ for $0 \leq x<1$, and $P_{r}(x+1)=P_{r}(x)$. Also we have the formulas

$$
\begin{equation*}
\sum_{r=0}^{k-1} P_{r}\left(t+\frac{r}{k}\right)=k^{1-m} P_{r}(k t), \quad P_{r}(-x)=(-1)^{r} P_{r}(x) \tag{2.1}
\end{equation*}
$$

It follows from the second of (2.1) that $c_{r}(h, k)=0$ for p even and $0 \leq r \leq p+1$. We have also

