# ON THE DIMENSION THEORY OF RINGS (II) 

## A. Seidenberg

1. Introduction. As in [3], we shall say that an integral domain $O$ is $n$ dimensional if in $O$ there is a proper chain

$$
(0) \subset P_{1} \subset \ldots \subset P_{n} \subset(1)
$$

of prime ideals, but no such chain

$$
(0) \subset P_{1}^{\prime} \subset \cdots \subset P_{n+1}^{\prime} \subset(1) .
$$

In Theorem 2 of [3] it was shown that if $O$ is $n$-dimensional, then $O[x]$ is at least $(n+1)$-dimensional and at most $(2 n+1)$-dimensional: here, as throughout, $x$ is an indeterminate. After preparatory constructions in Theorems 1 and 2 below, this theorem is completed in Theorem 3 by showing that for any integers $m$ and $n$ with $n+1 \leq m \leq 2 n+1$, there exist $n$-dimensional rings $O$ such that $O[x]$ is $m$-dimensional. The other theorems mainly concern l-dimensional rings. Such rings $O$ can be divided into those for which $O[x]$ is 2 -dimensional and those for which this condition fails, the so-called $F$-rings. The paper [3] was concerned with the existence of $F$-rings and showed [3, Theorem 8] that the l-dimensional ring $O$ is not an $F$-ring if and only if every quotient ring of the integral closure of $O$ is a valuation ring. Below, in Theorem 5 , we show more generally that if $O$ is 1 -dimensional but not an $F$-ring, then $O\left[x_{1}, \ldots, x_{n}\right]$ is $(n+1)$-dimensional, where the $x_{i}$ are indeterminates: this theorem depends on the essentially more general Theorem 4 , which says that if $O$ is an $m$-dimensional multiplication-ring, then $O\left[x_{1}, \cdots, x_{n}\right]$ is $(m+n)$-dimensional. In the case that the $x_{i}$ are not indeterminates, one can still say (Theorem 10) that
$\operatorname{dim} O\left[x_{1}, \cdots, x_{n}\right]=1+$ degree of transcendency of $O\left[x_{1}, \cdots, x_{n}\right] / O$,
provided that the intersection of the prime ideals $(\neq(0))$ in $O$ is $=(0)$, where $O$ is a 1 -dimensional ring such that $O[x]$ is 2 -dimensional. For $F$-rings $O$, Theorem 6 shows that

$$
n+2 \leq \operatorname{dim} O\left[x_{1}, \cdots, x_{n}\right] \leq 2 n+1,
$$

Received April 10, 1953.
Pacific J. Math. 4 (1954), 603-614

