A NOTE ON A PAPER BY L. C. YOUNG

F. W. Gehring

1. Introduction. Suppose that $f(x)$ is a real- or complex-valued function defined for all real x. For $0 \leq \alpha \leq 1$, we define the α-variation of $f(x)$ over $a \leq x \leq b$ as the least upper bound of the sums

$$
\left\{\sum|\Delta f|^{1 / a}\right\}^{a}
$$

taken over all finite subdivisions of $a \leq x \leq b$. (When $\alpha=0$, we denote by the above sum simply the maximum $|\Delta f|$.) We say that $f(x)$ is in W_{α} if it has finite α-variation over the interval $0 \leq x \leq 1$. L. C. Young has proved the following result.

Theorem 1. (See [2, Theorem 4.2].) Suppose that $0<\beta<1$ and that $f(x)$, with period 1 , satisfies the condition

$$
\int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}| d t \leq h^{\beta} \quad(h \geq 0)
$$

for every monotone function $\phi(t)$ such that

$$
\phi(t+1)=\phi(t)+1
$$

for all t. Then $f(x)$ is in W_{a} for each $\alpha<\beta$.
Young's argument does not suggest whether we can assert that $f(x)$ is in W_{β}. We present here an elementary proof for Theorem 1 and an example to show that this result is the best possible one in this direction.
2. Lemma. We require the following:

Lemma 2. Suppose that $a_{1}, a_{2}, \cdots, a_{N}$ and $b_{1}, b_{2}, \cdots, b_{N}$ are two sets of nonnegative numbers such that $a_{1} \geq a_{2} \geq \cdots \geq a_{N}$ and such that

$$
\sum_{\nu=1}^{n} a_{\nu} \leq \sum_{\nu=1}^{n} b_{\nu}
$$

Received July 2, 1953.
Pacific J. Math. 5 (1955), 67-72

