A NOTE ON A PAPER BY L. C. YOUNG

F. W. GEHRING

1. Introduction. Suppose that f(x) is a real- or complex-valued function defined for all real x. For $0 \le \alpha \le 1$, we define the α -variation of f(x) over $a \le x \le b$ as the least upper bound of the sums

$$\{\sum |\Delta f|^{1/a}\}^a$$

taken over all finite subdivisions of $a \le x \le b$. (When $\alpha = 0$, we denote by the above sum simply the maximum $|\Delta f|$.) We say that f(x) is in W_{α} if it has finite α -variation over the interval $0 \le x \le 1$. L.C. Young has proved the following result.

THEOREM 1. (See [2, Theorem 4.2].) Suppose that $0 < \beta < 1$ and that f(x), with period 1, satisfies the condition

$$\int_{0}^{1} |f \{ \phi(t+h) \} - f \{ \phi(t) \} | dt \leq h^{\beta} \qquad (h \geq 0)$$

for every monotone function $\phi(t)$ such that

$$\phi(t+1) = \phi(t) + 1$$

for all t. Then f(x) is in \mathbb{W}_{α} for each $\alpha < \beta$.

Young's argument does not suggest whether we can assert that f(x) is in W_{β} . We present here an elementary proof for Theorem 1 and an example to show that this result is the best possible one in this direction.

2. Lemma. We require the following:

LEMMA 2. Suppose that a_1, a_2, \dots, a_N and b_1, b_2, \dots, b_N are two sets of nonnegative numbers such that $a_1 \ge a_2 \ge \dots \ge a_N$ and such that

$$\sum_{\nu=1}^n a_\nu \leq \sum_{\nu=1}^n b_\nu$$

Received July 2, 1953.

Pacific J. Math. 5 (1955), 67-72