RELATIVIZATION AND EXTENSION OF SOLUTIONS OF IRREFLEXIVE RELATIONS

Moses Richardson

1. Introduction. Let \succ be an irreflexive binary relation defined over a domain \mathscr{D} of elements a, b, c, \ldots. We represent the system (\mathscr{I}, \succ) by an oriented graph G by regarding the elements of \mathscr{O} as vertices of G and inserting an arc $a b$ of the graph, oriented from a to b, if and only if $a>b$. The sentence " $a>b$ ", is read " a dominates b ". A set V of vertices is termed internally satisfactory ${ }^{1}$ if and only if $x \in V$ and $y \in V$ implies $x \notin y$. A set V of vertices is termed externally satisfactory if and only if $y \in \mathscr{D}-V$ implies that there exists an $x \in V$ such that $x \succ y$. A set V of vertices is termed a solution of G, or of (\mathscr{P}, \succ), if and only if it is both internally and externally satisfactory. In [4], various sufficient conditions for the existence of solutions were established.

By a subsystem $\left(\mathscr{D}_{0}, \succ\right)$ of the system (\mathscr{D}, \succ) is meant a system where $\mathscr{D}_{0} \subset D$ and the relation \succ for the subsystem is merely the restriction of the relation \succ for the supersystem (\mathscr{D}, \succ). Let G_{0} be the graph of the subsystem (\mathscr{D}_{0}, \succ) and let V_{0} be a solution of G_{0}. A solution V of G is termed an extension of V_{0} if $V \cap \mathscr{I}_{0}=V_{0}$; in this case V_{0} is also said to be relativized from V. In this paper, some sufficient conditions for the existence of relativizations and extensions of solutions are presented. More elegant and more effective extension theorems, especially with a view toward possible applications to the theory of n-person games, remain to be desired. It is hoped that the present paper may serve to stimulate interest in this apparently difficult problem.
2. A theorem on relativization. If H is a subgraph of the graph G, then the graph obtained by adding to H all the arcs of G which join pairs of vertices of H will be termed the juncture of H (relative to G) and will be denoted by \bar{H}.

[^0]
[^0]: ${ }^{1}$ In [2], internally satisfactory is called satisfactory with respect to non-domination, and in $[4]$ it is called \notin-satisfactory.

 Received March 1, 1954. Part of the work of this paper was done at the Institute for Advanced Study in 1952-3, and part while the author was consultant to the Logistics Project sponsored by the Office of Naval Research in the Department of Mathematics at Princeton University in 1953-4. A statement of many of the results contained herein appeared without proofs in [5].

 Pacific J. Math. 5 (1955), 551-584

