ON THE NUMBER OF SINGULAR POINTS, LOCATED ON THE UNIT CIRCLE, OF CERTAIN FUNCTIONS REPRESENTED BY C-FRACTIONS

Vikramaditya Singh and W. J. Thron

1. The continued fraction

$$
\begin{equation*}
1+\mathrm{K}_{n=1}^{\infty}\left(\frac{d_{n} z^{\alpha} n}{1}\right), \tag{1}
\end{equation*}
$$

where the α_{n} are positive integers and the $d_{n} \neq 0$ for all $n \geqq 1$, are sometimes called C-fractions. They were first studied by Leighton and Scott [2]. It is well known (see [1]) that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|d_{n}\right|^{1 / \alpha_{n}}=1 \text { and } \lim _{n \rightarrow \infty} \alpha_{n}=\infty, \tag{2}
\end{equation*}
$$

the continued fraction (1) converges to a function which is meromorphic for all $|z|<1$. The first results concerning the location of singular points of functions of this type were obtained by Scott and Wall [4]. Considerably better results were recently obtained by one of the present authors [5, 6]. In all of these results the continued fractions are assumed to satisfy the conditions (2) or even more restrictive ones. In this paper we are able to weaken condition (2) and replace it by

$$
\begin{equation*}
\text { (a) } \quad \lim _{n \rightarrow \infty}\left(4\left|d_{n}\right|\right)^{1 / \alpha_{n}}=1 \text {, } \tag{2}
\end{equation*}
$$

(b) there exists a sequence $\left\{\alpha_{n_{k}}\right\}$ such that

$$
\lim _{k \rightarrow \infty} \alpha_{n_{k}}=\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} n_{k} / k<2
$$

While all but one of the previous results gave sufficient conditions for the function represented by (1) to have the circle $|z|=1$ as a natural boundary, we give here criteria which are sufficient in order that the function has at least p singular points on the circle.

Let $A_{n}(z) / B_{n}(z)$ be the nth approximant of (1) and let σ_{n} and τ_{n} be the degrees of the polynomials $A_{n}(z)$ and $B_{n}(z)$, respectively. Also, let ρ_{n} be the maximum of the degrees of $A_{n}^{*}(z)$ and $B_{n}^{*}(z)$ where $A_{n}^{*}(z) / B_{n}^{*}(z)$ is the nth approximant of (1) when the d_{n} are replaced by their moduli. Then

[^0]
[^0]: Received April 1, 1954, and in revised form June 28, 1954. This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Dovelopment Command.

