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1. Introduction. In 1948, R. W. Ball [2] presented methods for
obtaining information about the number of absolute points of a corre-
lation of a finite projective plane in which neither the theorem of
Desargues nor any other special property (except, of course, the existence
of the correlation) is assumed. This work was, in a sense, a continua-
tion of an earlier investigation by R. Baer [1] of the case that the
correlation is a polarity.

We shall show how, using an incidence-matrix approach1, one may
obtain the principal results of [2] somewhat more directly. Some of
the results are strengthened. In addition, our method is sufficiently
general to apply at once to the so-called symmetric group divisible
designs, a class of combinatorial configurations including the finite pro-
jective planes. For simplicity, we shall present our main discussion in
the language of planes, reserving to the end indications of the generali-
zation.

As pointed out in §§ 3 and 4 the geometric problem with which we
are concerned leads naturally to the question : What are the irreducible
polynomials whose roots are roots of natural numbers? This question
is treated in the following section.

2 Polynomials whose roots are roots of natural numbers. Let
f(x) be an irreducible polynomial with integral coefficients and let one
of its roots be z=nιlIcζ, (n, k natural numbers, ζ a root of unity). Clearly
z satisfies the equation

(1) zkln=ζk=ζh

for some h, where from now on we use ζh to denote a primitive hih
root of unity. From (1) we see that Φh(zkln) = 0, where Φh is the
cyclotomic polynomial of order h. Hence

(2) f(x)\n«h>Φh(x*ln).

The problem is therefore reduced to that of finding the irreducible
factors of Φh(xkln) for arbitrary positive integers h, k, n. It will suffice
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1 Arithmetic properties of the incidence matrix have been exploited with conspicuous
success ([4], [5]). In this paper we study its characteristic polynomial.
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