A NUMERICAL CONDITION FOR MODULARITY OF A LATTICE

S. P. AVANN

1. Introduction. In this note a simple numerical condition (θ) is presented which is necessary for modularity of a finite lattice L. Though not sufficient (θ) appears to be a condition imposing a strong tendency toward modularity.

NOTATION. Covering, proper inclusion, and inclusion will be denoted by $>, \supset, \supseteq$ respectively. N[S] will denote the order of the set S. The unit and zero elements will be denoted by u and z respectively.

DEFINITION 1. A finite lattice L is upper semi-modular [1: p. 100] if and only if (ξ') a and $b > a \cap b$ imply $a \cup b > a$ and b. L is lower semi-modular if and only if (ξ'') $a \cup b > a$ and b imply a and $b > a \cap b$.

DEFINITION 2. In a finite lattice let $C(a) = \{x \in L | x < x \cup a > a\}$ and $D(a) = \{x \in L | x > x \cap a < a\}$.

2. Tests for modularity An immediate consequence of Definitions 1 and 2 is the following theorem.

THEOREM 1. In a finite lattice L condition (ξ') is equivalent to $D(a) \subseteq C(a)$ for all $a \in L$ and both imply $N[D(a)] \leq N[C(a)]$. Dually, (ξ'') is equivalent to $D(a) \supseteq C(a)$ for all $a \in L$ and both imply $N[D(a)] \geq N[C(a)]$. Moreover, modularity, (ξ') and (ξ'') , is equivalent to D(a) = C(a) for all $a \in L$ and both imply the condition (θ) :

(θ) N[D(a)] = N[C(a)] for all $a \in L$.

The contrapositive of the last statement of Theorem 1 serves as a useful test for non-modularity :

THEOREM 2. If there exists $a \in L$ for which $N[D(a)] \neq N[U(a)]$, then L is non-modular.

When either (ξ') or (ξ'') is known to hold in L, the verification of the condition (θ) is a test often easiest to apply. It merely requires counting coverings.

Received December 5, 1957.