ASYMMETRY OF A PLANE CONVEX SET WITH RESPECT TO ITS CENTROID

B. M. STEWART

A. S. Besicovitch [1] proved that every bounded plane convex set K has a central subset of area at least 2m(K)/3 where m(K) denotes the area of K. His method is to construct a semi-regular hexagon of center N whose vertices belong to the boundary of K.

Ellen F. Buck and R. C. Buck [2] showed that for every K there exists at least one point X, called a six-partite point, such that there are three straight lines through X dividing K into six subsets each of area m(K)/6. H. G. Eggleston [3] showed that any six-partite point of K is the center of a semi-regular hexagon of area 2m(K)/3 contained in K.

I. Fáry and L. Rédei [4] and S. Stein [5] defined for each point P the subset S(P) of K determined by the intersection of K with its radial reflection in P and considered the function f(P)=m(S(P))/m(K). By use of the Brunn-Minkowski theorem these authors showed that if a is a real number, then the set of points at which $f(P) \ge a$ is convex; and the maximum f^* of f(P) is attained at a single point. (Moreover, these results apply to an *n*-dimensional bounded convex set in *n*-dimensional Euclidean space.) Note that these conclusions may be false if the set K is not convex: for example, consider an L-shaped region formed by deleting one quarter of a square.

The results of Besicovitch and Eggleston imply $f(N) \ge 2/3$ and $f(X) \ge 2/3$, hence $f^* \ge 2/3$.

We obtain the following theorem.

THEOREM. If G is the centroid of K, then $f(G) \ge 2/3$.

To see that this result is not included in the theorems previously mentioned, consider the isosceles trapezoid with vertices (-4, 0), (4, 0), (2, 2), (-2, 2). For this example there is only one point N: (0, 1) and only one point $X: (0, 4-4\sqrt{.6})$ and the closure of these points does not include G: (0, 8/9).

Proof of the theorem. If K has central symmetry, then f(G)=1. In any case S(G) has central symmetry about G; hence if K does not have central symmetry, the part M of K outside S(G) has G at its centroid. Then as in Figure 1 let T be any maximal connected subset of M with

Received October 10, 1957.