ON INTEGRATION OF 1-FORMS

Maurice Sion

1. Introduction. It has been noted by several people that in order to define the integral of some differential 1-form ω along a curve C, the latter need not be of bounded variation. For example, in the extreme (and trivial) case where ω is the differential of some function f, the integral can be defined as the difference of the values assumed by f at the end-points of C. No condition on C is necessary. H. Whithney [4], with J. H. Wolfe, by the introduction of certain norms, has found general abstract spaces of curves along which the integral of 1-forms satisfying certain conditions can be defined. In fact, H. Whitney considers integration of p-forms with $p \geq 1$. In a previous paper [2], we obtained rather awkward conditions for a decent integral to exist that depended on the number of higher derivatives of ω on C.

In this paper, we consider 1 -forms ω possessing 'higher derivatives' on C in a sense somewhat different from that due to H. Whitney [3] which we used previously. A Lipschitz type condition on the remainders of the Taylor expansion is imposed (see 4.1.). We define the α-variation of a curve as the supremum of sums of α th powers of chords (see 2.7) and show that the integral of ω along C exists if the α-variation of C is bounded, where α is related to the number of 'higher derivatives' of ω on C. Under somewhat stronger hypotheses on C, we show that this integral is an anti-derivative of ω on C.
2. Notation and basic definitions. Throughout this paper, N is a positive integer and we use the following notation.
2.1. E denotes Euclidean $(N+1)$-space.
2.2. $\|x\|=\left(\sum_{i=0}^{N} x_{i}^{2}\right)^{1 / 2}$ for $x \in E$.
2.3. $\operatorname{diam} U=\sup \{d: d=\|x-y\|$ for some $x \in U$ and $y \in U\}$
2.4. φ is a continuous function on the closed unit enterval to E and $C=$ range φ.
2.5. \mathscr{S} is the set of all subdivisions of the unit interval, i.e. functions T on $\{0,1, \cdots, k\}$ for some positive integer k such that: $T(0)=0, \quad T(k)=1, \quad T(i-1)<T(i)$ for $i=1, \cdots, k$
2.6. $[T / a, b]=\{i: a \leq T(i-1)<T(i) \leq b\}$
2.7. $\quad V_{a}(a, b)=\sup _{T \in \mathscr{S}^{1} \in[T / a, b]} \| \varphi\left(T(i-1)-\varphi(T(i)) \|^{\alpha}\right.$

[^0]
[^0]: Received August 25, 1958.

