VARIATIONAL ASPECTS OF GENERALIZED CONVEX FUNCTIONS

William T. Reid

1. Introduction. For a second order linear homogeneous differential equation

$$
\begin{equation*}
L(y) \equiv y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0 \tag{1.1}
\end{equation*}
$$

with $p_{1}(x), p_{2}(x)$ continuous real-valued functions on an open interval (a, b) of the real line, and such that for arbitrary $x_{1}, y_{1}, x_{2}, y_{2}$ with $a<x_{1}<x_{2}<b$ there is a unique solution $y(x)=y\left(x ; x_{1}, y_{1} ; x_{2}, y_{2}\right)$ of (1.1) satisfying $y\left(x_{\alpha}\right)=y_{\alpha},(\alpha=1,2)$, a real-valued function $u(x)$ has been termed "sub-(L) on (a, b)" if for arbitrary c, d on $a<c<d<b$ we have

$$
u(x) \leqq y(x ; c, u(c) ; d, u(d)) \text { on } c \leqq x \leqq d
$$

The class of such sub- (L) functions is a special instance of sub- F functions as introduced by Beckenbach [1], who established for general sub- F functions various properties analogous to those of convex functions.

In particular, for sub- (L) functions it has been established by Peixoto [8] and Bonsall [3] that a real-valued function $u(x)$ of class $C^{\prime \prime}$ on (a, b) is $\operatorname{sub}-(L)$ on this interval if and only if $L(u) \geqq 0$ on (a, b); indeed, Peixoto has shown that for certain types of non-linear second order differential equations the corresponding sub-functions of class $C^{\prime \prime}$ are characterized by a similar differential inequality. Now if $a<x_{0}<b$ and

$$
r_{0}(x)=\exp \left[\int_{x_{0}}^{x} p_{1}(t) d t\right], p_{0}(x)=-p_{2}(x) r_{0}(x),
$$

then for a function $u(x)$ of class $C^{\prime \prime}$ the condition $L(u) \geqq 0$ on (a, b) is equivalent to the condition that on each compact subinterval $[c, d]$ of (a, b) the function $u(x)$ affords a minimum to the integral

$$
\int_{c}^{a}\left[r_{0}(x) y^{\prime 2}+p_{0}(x) y^{2}\right] d x
$$

in the class of $y(x)$ that are absolutely continuous with $y^{\prime}(x)$ of integrable square on $[c, d]$, and

$$
y(c)=u(c), y(d)=u(d), y(x) \leqq u(x) \text { on }[c, d]
$$

[^0]
[^0]: Received August 20, 1958. These results were obtained while the author was visiting professor at the University of California, Los Angeles. This paper was prepared in part under the sponsorship of the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

