RECURRENT MARKOV CHAINS

S. Orey

In this paper Markov chains $\left\{X_{i}\right\}, i=1,2, \cdots$, which stationary transition probabilities are considered which take values in some measurable space (S, \mathscr{O}) and satisfy
(*) The Borel field \mathscr{B} is separable and there exists a sigma finite measure m on (S, $\mathscr{B})$ such that $P\left[\right.$ entering E at some time $\left[X_{0}=x\right]=1$ for all $x \in S$ and all $E \in \mathscr{B}$ with $m(E)>0$, where P is the underlying probability measure.

Such chains were introduced by Harris in [6], [7]. Let $P^{n}(x, E)$ be the n-step transition probability, $P^{1}(x, E)=P(x, E)$. In [7] it is proved that there exists a unique (up to constant factor) sigma finite measure Q which is stationary in the sense that $Q(E)=\int_{S} P(x, E) Q(d x)$.

Section 1 establishes some preliminary results. The relationship between (*) and Doeblin's condition is investigated. The results of Harris [6], [7] are summarized and extended. Note that many notational conventions used throughout the paper are introduced in §1.

In § 2 it is shown that after the deletion of an inessential Q-null set the process splits up into a finite number, d, of disjoint cyclically moving classes.

Section 3 studies the asymptotic behavior of $P^{n}(x, \cdot)$ in case the stationary measure Q happens to be a probability measure. The approach is the "direct" approach of Markov and Doeblin and Doob [4]. It is shown that if $d=1$, the total variation of $\left(P^{n}(x, \cdot)-Q\right)$ approaches 0 as n approaches ∞; for $d>1$ the convergence statement must be modified in an obvious way. For the relationship of these results to those of [3] see the beginning of $\S 3$.

Section 4 considers the asymptotic behavior of

$$
U(n)=\sum_{N=1}^{\infty} P\left[\sum_{i=1}^{N} f\left(X_{i}\right)=n\right]
$$

where f is a measurable function from S into the positive integers. If $\int_{S} f(x) Q(d x)<\infty, U(n)$ is for large n approximately a periodic function. The period depends both on the $\left\{X_{i}\right\}$ process and on f; this period may be greater than 1 even though the d associated with the $\left\{X_{i}\right\}$ process is 1 and $f(x)=1$ for a set of x of positive Q-measure.

Section 5 is concerned with the behavior of normed sums,

[^0]
[^0]: Received September 11, 1958. This paper was prepared with the partial support of the Office of Ordnance Research, U. S. Army under Contract DA-04-200-ORD-171.

