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In this paper Markov chains {XJ, i = 1,2, •••, which stationary
transition probabilities are considered which take values in some measura-
ble space (S, &) and satisfy

(*) The Borel field & is separable and there exists a sigma finite
measure m on (S, &) such that P [entering E at some time [Xo = x] = 1
for all x e S and all Ee & with m(E) > 0, where P is the underlying
probability measure.

Such chains were introduced by Harris in [6], [7]. Let Pn(x, E) be
the w-step transition probability, P\x, E) — P(x, E). In [7] it is proved
that there exists a unique (up to constant factor) sigma finite measure

Q which is stationary in the sense that Q{E) — \ P(x, E)Q(dx).

Section 1 establishes some preliminary results. The relationship
between (*) and Doeblin's condition is investigated. The results of
Harris [6], [7] are summarized and extended. Note that many nota-
tional conventions used throughout the paper are introduced in § 1.

In § 2 it is shown that after the deletion of an inessential Q-null set
the process splits up into a finite number, d, of disjoint cyclically mov-
ing classes.

Section 3 studies the asymptotic behavior of Pn(x, ) in case the
stationary measure Q happens to be a probability measure. The approach
is the "direct" approach of Markov and Doeblin and Doob [4]. It is
shown that if d = 1, the total variation of (Pn(x,-) — Q) approaches 0 as n
approaches oo; for d > 1 the convergence statement must be modified
in an obvious way. For the relationship of these results to those of [3]
see the beginning of § 3.

Section 4 considers the asymptotic behavior of

U(n) =

where / is a measurable function from S into the positive integers. If

f(x)Q(dx) < co, U(n) is for large n approximately a periodic function.

'he period depends both on the {Xι} process and on /; this period may
be greater than 1 even though the d associated with the {Xt} process
is 1 and f(x) = 1 for a set of x of positive Q-measure.

Section 5 is concerned with the behavior of normed sums,
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