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1. Introduction. Let V(G) denote the set of all functions having

finite variation on G. Set G — ( — oo, oo) = G, and let Ko(G) be the

Banach space of all functions in V(G) which vanish at infinity. If

/ 6 VJfi), then there exists a bounded linear operator (tpf) on LV(G)

such that

(i0) (Fourier transform of (tpf)x) = (Fourier transform of x) /

for all x in LV(G). This will be shown in 7.2. In the terminology of
Hille [3, p. 566], functions / having property (i0) are called ' 'factor
functions for Fourier transforms of type (LP,LP)".

Suppose 1 < p < oo. When / e L\G) Π V{G)c V^G), then (tpf) is a
singular integral operator: for all x in LP(G) it is found that (tpf)x has
the form

M ~ F [ θ χ U (λ e G) ,
θ — λ

where the integral is taken in the Cauchy principal value sense.

In 6.2 will be defined a set A(LP(G)) which contains all factor
functions for Fourier transforms of type (LP9 Lp); the set A(LP(G)) is a
slight extension of what Mihlin [6] calls "multipliers of Fourier inte-
grals " . We will find a number Np such that

( i ) if f e V4G) then f e A(L*(G)) and \\(tpf)\\ ^ Np . \\f\\v ,

where | | / | | υ denotes the total variation on G of the function /. Let F*
be the mapping {x -> x * F}, where x * F is the convolution of the func-
tions x and F;

[x * F]λ = f" x(θ) * F ( Θ - X)dθ (λ 6 G).

Let (Yf) denote the Fourier transform of the function / :

(ii) if f 6 L\G)Γ[ V(G), then the transformation (Yf)* is a

densely defined bounded operator, and (tpf) is its continuous linear

extension to the whole space LV(G).

Let us for a moment call G = {0, ± 1 , ±2, •} and G = [0,1]. In
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