ON CONDITIONAL EXPECTATION AND QUASI-RINGS
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1. Introduction. Let (2, o, P) denote a complete probability space
in which ©Q is an arbitrary point set (w € Q), .o is a ¢-algebra of sub-
sets of 2 (4 € &) and P is a probability measure on .&~ with respect
to which P is complete. Let X, Y, Z, with or without subsecripts, de-
note real-valued . -measurable random variables (r.v.) Let 2 denote
the space of P-integrable r.v.’s. Define a linear operator K on &' by

EoX:SXdP.
Q

FE is the expectation operator and E o X is called the expectation of X.
The P-integrability criterion is equivalent to specifying FEo| X | < co.
Let ., with or without subscripts, denote a complete ¢-algebra con-
tained in .27, and let <#, denote the g-algebra of Borel sets of k-dimen-
sional Euclidean space. Forr.v.’s. 1=1, X,, - - -, k, define &#(X,,- -+, X;) C &
as the minimal complete o-algebra containing all inverse images with
respect to the vector (X, ---,X;) of sets in <#,. For A e &, let
I, e & denote the indicator function of the set A; that is, I (w)=1 or
0 according as w € A or w ¢ A. For X e &, define the completely-
additive set function Qy: % — R, by Qx(A) = Eo XI, .

By the Radon-Nikodym Theorem there exists for Xe & and ./ €.,
an & -measurable solution Y € & to the system of equations

(1) Eo(X— V), =0 (A e o)
or equivalently
Qx(A) = Eo YI, (Ae 7).

This solution is unique a.s. (relative to the restriction of P to &),
The equivalence class of all such solutions (or any representative thereof)
is denoted by E{X|< } and called the conditional expectation of X given
& . For X,Y € & the notation E{X| Y} = E{X| £ (Y)} will also be
used. This definition of conditional expectation, which is the standard
one, makes it necessary when proving theorems about conditional expec-
tations to show at some stage of the proof that a functional equation of
the form (1) is valid for all subsets of a specified ¢-algebra. That this
can be a tedious task is demonstrated by the existing proofs of some of
the applications in §4 of the theorems which are proved below.
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