ON THE STABILITY OF BOUNDARY COMPONENTS

Kôtaro Oikawa

I. Presentation of the Problem

1. Definitions.

1. A boundary component of a plane region $D \subset(|z| \leqq \infty)$ is a component of the boundary ∂D of D, i.e., a connected subset of ∂D which is not a proper subset of any connected subset of ∂D.

There is an alternate definition. Let $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ be a sequence of subregions of D such that
(i) $\Omega_{1} \supset \Omega_{2} \supset \cdots$,
(ii) the relative boundary $\partial \Omega_{n} \cap D$ consists of one closed analytic curve in D,
(iii) $\bigcap_{n=1}^{\infty} \Omega_{n}=\phi$. Two sequences $\left\{\Omega_{n}\right\}$ and $\left\{\Omega_{n}^{\prime}\right\}$ are said to be equivalent if, for any n, there exists m such that $\Omega_{m} \subset \Omega_{n}^{\prime}$ and $\Omega_{m}^{\prime} \subset \Omega_{n}$. A boundary component of D is an equivalence class of $\left\{\Omega_{n}\right\}$.

These two definitions are equivalent in the following sense:
(i) Given a sequence $\left\{\Omega_{n}\right\}$, the set $\bigcap_{n=1}^{\infty} \bar{\Omega}_{n}$ is a component of ∂D and, for two sequences, these sets coincide if and only if the sequences are equivalent.
(ii) Given a component Γ of ∂D, there exists a sequence such that $\Gamma=\bigcap_{n=1}^{\infty} \bar{\Omega}_{n}$.

For a boundary component Γ, the sequence $\left\{\Omega_{n}\right\}$ such that $\Gamma=\bigcap_{n=1}^{\infty} \bar{\Omega}_{n}$ is called a defining sequence of Γ.

Let $w=f(z)$ be a topological mapping of D onto a plane region D^{\prime}. Then we can immediately see from the second definition that f gives a one-to-one correspondence between the boundary components of D and D^{\prime}. We shall speak of the image of a boundary component Γ under f in this sense and denote it by $f(\Gamma)$.
2. Let D^{c} denote the complement of D with respect to the extended plane $|z| \leqq \infty$. For a boundary component Γ, there exists a uniquely determined component of D^{c} whose boundary coincides with Γ. We call it the component of D^{c} corresponding to Γ and denote it by Γ^{*}.

If D does not contain the point $z=\infty$, the boundary component Γ

[^0]
[^0]: Received January 7, 1959. The present paper is a part of the author's doctoral dissertation submitted to the University of California, Los Angeles. The author wishes to express his heartiest gratitude to Professor Leo Sario for his guidance and encouragement during the preparation of this paper.

