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1. Introduction, If a string with a non-negative integrable density
p{x), x 6 [α, δ], is fixed at the points x — a and x = 6 under unit tension,
then the natural frequencies of the string are determined by the eigen-
values of the boundary value problem

(1.1) y" + μρ(x)y = 0 , y(a) = y(b) = 0 .

Indicating their dependence on the function ρ(x), we denote these eigen-
values by

(1.2) μdp] <μΛp]< •••

We consider the set of all such strings which have the same total

S b

p(x)dx. It is well known [5] that the eigenvalues (1.2)
a

satisfy the inequality

^ y »=1,2, ,

with equality when a mass of amount M/n is concentrated at the mid-
point of each of n segments obtained by partitioning the string into n
equal parts. If we place some restriction on ρ(x) which prohibits such
an accumulation of mass, then we can expect to get a larger bound than
that of (1.3). M. G. Krein [8] has found that when 0 < ρ{x) < H<oo, the
eigenvalues (1.2) satisfy the inequalities

(1.4) M^χ( M_) < μ Λ p ] <

where X(t) is the least positive root of the equation

1 - t

The inequality (1.4) is sharp and as H—> oo, the lower bound approaches
that of (1.3).

In this paper, we investigate the nature of the density functions
for which the greatest lower bounds of the eigenvalues (1.2) are attained
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