A GENERALIZATION OF THE STONE-WEIERSTRASS THEOREM

Errett Bishop

1. Introduction. Consider a compact Hausdorff space X and the set $C(X)$ of all continuous complex-valued functions on X. Consider also a subset \mathfrak{N} of $C(X)$ which is an algebra, which is closed in the uniform topology of $C(X)$, which contains the constant functions, and which contains sufficiently many functions to distinguish points of X. Such an algebra \mathfrak{A} is called self-adjoint if the complex conjugate of each function in \mathfrak{H} is in \mathfrak{A}. The classical Stone-Weierstrass Theorem states that if \mathfrak{A} is self-adjoint then $\mathfrak{A}=C(X)$. If \mathfrak{A} has the property that the only functions in \mathfrak{A} which are real at every point of X are the constant functions then \mathfrak{A} is called anti-symmetric. Clearly antisymmetry and self-adjointness are opposite properties, in the sense that if \mathfrak{H} has both properties then X must consist of a single point.

Hoffman and Singer [2] have studied these two properties and given several interesting examples. The present paper was inspired by their work but it more directly relates to a previous paper of Šilov [3]. The purpose of the present paper is to prove the following decomposition theorem for a general algebra \mathfrak{Y} of the type defined above.

Theorem. There exists a partition P of X into disjoint closed sets such that
(i) for each S in P the restriction \mathfrak{A}_{S} of \mathfrak{A} to S is anti-symmetric,
(ii) if a function f in $C(X)$ has, for each S in P, a restriction to S which belongs to \mathfrak{U}_{S}, then f is in \mathfrak{X},
(iii) for each S in P, each closed subset T of $X-S$, and each $\varepsilon>0$ there exists g in \mathfrak{N} with $\|g\| \leqq 1$, with $|g(x)-1|<\varepsilon$ for x in S, and with $|g(x)|<\varepsilon$ for x in T.

Property (ii) of this theorem is the essential new fact of this paper. The construction given below which leads to the partition P is due to Šilov [3], who in essence proved (i) and (iii). Silov proved a weaker property than (ii). Our proofs are different from those of Silov, although the construction is the same.

The fact that the Stone-Weierstrass theorem is a special case of the theorem to be proved here is clear. If \mathfrak{N} is self-adjoint then each \mathfrak{A}_{S} is self-adjoint. Since \mathfrak{H}_{S} is also anti-symmetric, each set S in P consists of a single point. Therefore $\mathfrak{A}_{s}=C(S)$. By the theorem to

[^0]
[^0]: Received June 15, 1960.

