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Throughout this paper D will denote a bounded domain in Euclidean
w-space Rn, and T will be a bounded, continuous, single-valued transfor-
mation from D into Rn. For such transformations, concepts of essential
bounded variation and essential absolute continuity have been defined
and studied by Rado and Reichelderfer ([3], IV. 4). In this paper a
characterization of essential absolute continuity will be given. The
characterization suggests a definition of uniform essential absolute con-
tinuity and some of the consequences of this definition will be investigated.

1. For every point x in Rn a multiplicity function K(x, T, D) is
defined ([3], II. 3.2). T is said to be essentially of bounded variation
(briefly eBV) in D provided K{x, T, D) is Lebesgue summable in R71

([3], IV. 4.1, Definition 1). Let X , = X . (Γ, D) denote the set of
points x in Rn for which K{x, T, D) is infinite. Thus if Γis eBV in D,
then .SfX, — 0 (if A is a subset of Rn, then ^A denotes its exterior
Lebesgue measure). Since K(x, T, D) is a lower semicontinuous function
of x ([3], II. 3.2, Remark 10), X , is a Borel set and, by Theorem 1
of [31, IV. 1.1, the set T1 X , is also a Borel set.

2 If x is a point in Rn and C is a component of T~ιx which is
closed relative to Rn, then C is termed a maximal model continuum (x,
T,D) ([3], II. 3.1, Definition 1). Denote by <£ = <£(2\ D) the class com-
posed of all sets C for which TC is a point in Rn and C is a maximal
model continuum for {TC, T, D). Let © = <ϊ(Γ, D) be the subset of ®
consisting of those elements C each of which is an essential maximal
model continuum (briefly e.m.m.c.) for {TC, T, D) ([3], II. 3.3, Defini-
tion 1); the set E = E(T, D) = U C, C e © ([3], II. 3.6). Let (£f =
Gf̂ Γ, /?) be the subset of 6f consisting of those elements C each of which
is an essentially isolated e.m.m.c. (briefly e.i. e.m.m.c.) for {TC, T, D)
([3], II. 3.3, Definition 2); the set E, = E,{T, D) = U C, C e ^ ([3], II.
3.6.). Finally, let @f = @f(Γ, D) be the subset of ©4 consisting of those
elements of @{ which consist of single points; the set Ef = E^T, Z>) =
UC, Cee? ([3], II. 3.6). The sets E, E, and E? are Borel sets ([3],
II. 3.6, Theorem 1).

If T is eBV in Z>, then a necessary and sufficient condition that T
be essentially absolutely continuous (briefly eAC) in D ([3], IV. 4.2) is
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