ASYMPTOTIC ESTIMATES FOR LIMIT CIRCLE PROBLEMS

C. A. SWANSON

1. Preliminaries. Characteristic value problems will be considered for the second order, ordinary, linear differential operator L defined by

(1.1)
$$Lx = \frac{1}{k(s)} \left\{ -\frac{d}{ds} \left[p(s) \frac{dx}{ds} \right] + q(s)x \right\}$$

on the open interval $\omega_{-} < s < \omega_{+}$, where k, p, q are real-valued functions on this interval with the properties that

(i) p is differentiable;

(ii) k and q are piecewise continuous; and

(iii) k and p are positive-valued. The points ω_{-} and ω_{+} are in general singularities of L; the possibility that they are $\pm \infty$ is not excluded. It will be convenient to use the notations

(1.2)
$$(x, y)_s^t = \int_s^t x(u)\overline{y}(u)k(u)du, \qquad \omega_- \leq s < t \leq \omega_+ ,$$

(1.3)
$$[xy](s) = p(s)[x(s)\overline{y}'(s) - x'(s)\overline{y}(s)].$$

Then Green's symmetric formula for L has the form

(1.4)
$$(Lx, y)_s^t - (x, Ly)_s^t = [xy](t) - [xy](s)$$
.

The symbols $[xy](\pm)$ will be used as abbreviations for the limits of [xy](s)as $s \to \omega_{\pm}$, and (x, y) will be used for the left member of (1.2) when s, t have been replaced by ω_{-} , ω_{+} . Let $\mathfrak{H}, \mathfrak{F}_{ab}$ denote the Hilbert spaces which are the Lebesgue spaces with respective inner products (x, y), $(x, y)_{a}^{b}$ and norms $||x|| = (x, x)^{1/2}$, $||x||_{a}^{b} = [(x, x)_{a}^{b}]^{1/2}$, $\omega_{-} \leq a < b \leq \omega_{+}$.

Let a_0 and b_0 be fixed numbers satisfying $\omega_- < a_0 < b_0 < \omega_+$ and let R_0 be the rectangle in the a - b-plane described by the inequalities $\omega_- < a \leq a_0, \ b_0 \leq b < \omega_+$. Every closed, bounded subinterval [a, b] of the basic interval (ω_-, ω_+) can be associated in a one-to-one manner with a point in R_0 . For every such [a, b] we shall consider the regular Sturm-Liouville problem

$$(1.5) Ly = \mu y, U_a y = U_b y = 0$$

on [a, b], where U_a , U_b are the linear boundary operators

(1.6) $U_a y = \alpha_0(a) y(a) + \alpha_1(a) y'(a)$ $U_b y = \beta_0(b) y(b) + \beta_1(b) y'(b) ,$

with α_0 , α_1 real-valued functions not both 0 for any value of a on $(\omega_{-}, a_0]$,

Received January 5, 1961.