SELF-INTERSECTION OF A SPHERE ON A COMPLEX QUADRIC

I. FÁry

1. The real part S^{n} of a quadric V in complex, affine $(n+1)$-space is a sphere. The self-intersection of S^{n} in V is the same as the selfintersection of a "vanishing cycle," introduced by Lefschetz, and plays a certain role in [4], [5]. We will compute here this self-intersection number, using elementary tools.

Let us introduce some notations. $\quad P_{n+1}$ denotes the complex projective space of algebraic dimension $n+1$, hence of topological dimension

$$
\operatorname{dim} P_{n+1}=2 n+2
$$

To each projective sub-space P_{k} of P_{n+1} a positive orientation can be given, thus it can be considered as a cycle $p_{2 k}$. Then we agree that

$$
\begin{equation*}
\text { if } k+l=n_{1}+1 \text {, then }\left(p_{2 k}, p_{2 l}\right)=1 \text { in } P_{n+1} \tag{1}
\end{equation*}
$$

be true for the intersection numbers of cycles. This is the usual convention, the one in [1], for example; in [7] another convention is adopted.

Let x_{1}, \cdots, x_{n+2} be a fixed system of projective coordinates in P_{n+1}. Then

$$
\begin{equation*}
Q_{n}: x_{1}^{2}+\cdots+x_{n+2}^{2}=0 \tag{2}
\end{equation*}
$$

is a non-singular quadric; $\operatorname{dim} Q_{n}=2 n$. The points of P_{n+1} whose last coordinate is non-zero form a complex affine space C_{n+1}, and

$$
V=Q_{n} \cap C_{n+1}=\left[x: x \in Q_{n}, x_{n+2} \neq 0\right]
$$

is a non-singular affine quadric. If $z \in C_{n+1}$, we denote by z_{1}, \cdots, z_{n+2} those coordinates for which $z_{n+2}=i$ where $i^{2}=-1$; thus z_{1}, \cdots, z_{n+1} are affine coordinates in C_{n+1}. Then

$$
\begin{array}{ll}
V: z_{1}^{2}+\cdots+z_{n+1}^{2}=1 \\
S^{n}: z_{1}^{2}+\cdots+z_{n+1}^{2}=1, z_{1} \cdots, z_{n+1} r e a l s & \left(z \in C_{n+1}\right)
\end{array}
$$

are the equations of an affine quadric and its real part respectively; this real part S^{n} is, of course, a sphere. We consider S^{n} with an arbitrarily chosen and fixed orientation as a cycle s. It is well known (see, for example, [2], p. 35, (g)) that

