SELF-INTERSECTION OF A SPHERE ON A COMPLEX QUADRIC

I. Fáry

1. The real part S^n of a quadric V in complex, affine (n + 1)-space is a sphere. The self-intersection of S^n in V is the same as the selfintersection of a "vanishing cycle," introduced by Lefschetz, and plays a certain role in [4], [5]. We will compute here this self-intersection number, using elementary tools.

Let us introduce some notations. P_{n+1} denotes the complex projective space of algebraic dimension n + 1, hence of topological dimension

dim
$$P_{n+1} = 2n + 2$$
.

To each projective sub-space P_k of P_{n+1} a positive orientation can be given, thus it can be considered as a cycle p_{2k} . Then we agree that

(1)
$$if \ k+l=n+1$$
, then $(p_{2k}, p_{2l})=1$ in P_{n+1}

be true for the *intersection numbers* of cycles. This is the usual convention, the one in [1], for example; in [7] another convention is adopted.

Let x_1, \dots, x_{n+2} be a fixed system of projective coordinates in P_{n+1} . Then

(2)
$$Q_n: x_1^2 + \cdots + x_{n+2}^2 = 0$$

is a non-singular quadric; dim $Q_n = 2n$. The points of P_{n+1} whose last coordinate is non-zero form a complex affine space C_{n+1} , and

$$V = Q_n \cap C_{n+1} = [x: x \in Q_n, x_{n+2} \neq 0]$$

is a non-singular affine quadric. If $z \in C_{n+1}$, we denote by z_1, \dots, z_{n+2} those coordinates for which $z_{n+2} = i$ where $i^2 = -1$; thus z_1, \dots, z_{n+1} are affine coordinates in C_{n+1} . Then

$$V: z_1^2 + \cdots + z_{n+1}^2 = 1$$
 $(z \in C_{n+1})$
 $S^n: z_1^2 + \cdots + z_{n+1}^2 = 1, z_1 \cdots, z_{n+1} reals$

are the equations of an affine quadric and its real part respectively; this real part S^n is, of course, a sphere. We consider S^n with an arbitrarily chosen and fixed orientation as a cycle s. It is well known (see, for example, [2], p. 35, (g)) that

Received September 12, 1960.