ON THE DETERMINATION OF SETS BY THE SETS OF SUMS OF A CERTAIN ORDER

B. Gordon, A. S. Fraenkel and E. G. Straus

1. Introduction. Let $X=\left\{x_{1}, \cdots, x_{n}\right\}$ be a set of (not necessarily (iistinct) ${ }^{1}$ elements of a torsion free Abelian group. Define $P_{s}(X)=$ $\left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{s}} \mid i_{1}<i_{2}<\cdots<i_{s}\right\}$. Thus $P_{s}(X)$ has $\binom{n}{s}$ (not necessarily distinct) elements. We introduce the equivalence relation $X \sim Y$ if and only if $P_{s}(X)=P_{s}(Y)$. Let $F_{s}(n)$ be the greatest number of sets X which can fall into one equivalence class. Our purpose in this paper is to study conditions under which $F_{s}(n)>1$. Clearly $F_{s}(n)=\infty$ if $n \leqq s$ so that we may restrict our attention to $n>s$.

In [5] Selfridge and Straus studied this question, restricting attention to sets of elements of a field of characteristic 0 . In $\S 2$ we show that the numbers $F_{s}(n)$ remain the same even if we restrict ourselves to sets of positive integers. Thus the results in [5] remain valid in our case. These included a necessary condition for $F_{s}(n)>1$ and the proof that $F_{2}(n)>1$ (and hence $F_{n-2}(n)>1$) if and only if n is a power of 2. Also $F_{s}(2 s)>1$.

In § 3 we give a simpler form of the necessary condition in [5].
In § 4 we examine this necessary condition and prove that for $s>2$ we have $F_{s}(n)=1$ for all but a finite number of n. This was conjectured in [5]. The method seems to be of independent interest since it can be applied to a class of Diophantine equations in two unknowns which are algebraic in one and exponential in the other variable.

In $\S 5$ we apply the methods of [5] to show that $F_{2}(8)=3, F_{2}(16) \leqq$ $3, F_{3}(6) \leqq 6$ and $F_{4}(12) \leqq 2$.

The fact that $F_{2}(8)=3$ disproves the conjecture $F_{2}(n) \leqq 2$ made in [5]. Except for the corresponding result $F_{6}(8)=3$ we have not found another nontrivial case in which we can prove $F_{\mathrm{s}}(n)>2$.

In the final section we adapt a method of Lambek and Moser [3] to the case $s=2$ and get a partial characterization of those sets which are equivalent to other sets.
2. Reduction to sets of integers. In this section we demonstrate that there exist $F_{s}(n)$ distinct equivalent sets of positive integers so that in any effort to evaluate $F_{s}(n)$ we may restrict our attention to sets of integers.

[^0]
[^0]: Received March 29, 1961. The work of the third author was supported in part by the National Science Foundation.
 ${ }^{1}$ Throughout this paper we use the word "set" to mean "set with multiplicities" in the sense in which one speaks of the set of zeros of a polynomial.

