EVALUATION OF AN E-FUNCTION WHEN THREE OF ITS UPPER PARAMETERS DIFFER BY INTEGRAL VALUES

T. M. MacRobert.

1. Introduction. If $p \geqq q+1$, [1, p. 353]
(1)

$$
E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right)=\sum_{r=1}^{p} z^{\alpha} r \sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{r}+n\right) \prod_{t=1}^{p} \Gamma\left(\alpha_{t}-\alpha_{r}-n\right)}{n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha_{r}-n\right)}(-z)^{n},
$$

where, if $p=q+1,|z|<1$. The dash in the product sign indicates that the factor for which $t=r$ is omitted.

Now, if two or more of the α 's are equal or differ by integral values, some of the series on the right cease to exist. For instance, if $\alpha_{1}=\alpha+l, \alpha_{2}=\alpha$, where l is zero or a positive integer, it has been shown [2, p. 30] that the first two series can be replaced by the expression
(2)

$$
\begin{aligned}
& \left.(-1)^{l} z^{\alpha+l}\right\rangle \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+l+n) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-l-n\right)}{n!(l+n)!\prod_{s=1}^{l} \Gamma\left(\rho_{s}-\alpha-l-n\right)} \Delta_{n} z^{n} \\
& +z^{a} \sum_{n=0}^{l-1} \Gamma \frac{\Gamma(\alpha+n)(l-n-1)!\prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-n\right)}{n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-n\right)}(-z)^{n},
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{n} & =\psi(l+n)+\psi(n)-\psi(\alpha+l+n-1)-\log z \\
& +\sum_{t=3}^{p} \psi\left(\alpha_{t}-\alpha-l-n-1\right)-\sum_{s=1}^{q} \psi\left(\rho_{s}-\alpha-l-n-1\right) .
\end{aligned}
$$

Here

$$
\begin{equation*}
\psi(z)=\frac{d}{d z} \log \Gamma(z+1) \tag{3}
\end{equation*}
$$

so that
(4)

$$
\frac{d}{d z} \Gamma(z+1)=\Gamma(z+1) \psi(z)
$$

It will now be shown that, in the case in which

[^0]
[^0]: Received September 28, 1961.

