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1. Introduction, As is well known, a Blaschke product f(z) in
{\z\ < 1} has radial limits f(eίθ) of modulus one almost everywhere on
{\z\ = 1}. The object of the present paper is to give a partial answer
to the question: how many times does f(z) assume a given radial limit?
We shall prove the following theorem.

THEOREM A. Let E be a given closed set on {\w\ = 1} and let Er

be the complement of E relative to {\w\ = 1}. Then there exists a
Blaschke product f(z), all of whose radial limits are of modulus one,
and such that the set

has the power of the continuum for eiβ e E and is countable for eίβ e E\

Theorem A is a condensed statement of what we shall actually prove;
Theorems 1, 2, and 3 contain somewhat more information on f(z). The
method of proof is to construct a suitable regularly-branched covering
W" of {\w\ < 1}, corresponding to an automorphic function w — f(z), and
then use the geometry of <W~ to obtain our results.

The question naturally arises as to whether one could prove Theorem
A directly. That is: could one produce an/(2) with the desired properties
by exhibiting its zeros instead of defining/(#) by means of a surface
The answer to this question does not seem to be obvious.

2, The surface ^ ~ . Let E be a given nonvoid closed subset of
{|w| = 1} and let {αw}Γ be an infinite sequence of points in {\w\ < 1}
whose derived set is E. Clearly, we may assume that an Φ 0 and

(1) arg am Φ arg an (m Φ n) .

Let W~ be the simply-connected unbordered covering of {\w\ < 1} which
is regularly-branched over the points {an} with all branch points of
multiplicity 2. It is well known [2, 3, 6] that such a covering, with any
specified multiplicity or signature for each an, exists and is unique.
Instead of appealing to the general theory of regularly-branched coverings,
we shall construct the surface 'W directly, since the details of the
construction play a role in the proof of Theorem A.
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