FOURIER SERIES WITH LINEARLY DEPENDENT COEFFICIENTS

Harry Hochstadt

I. Introduction. The following problem is posed and solved in this article. A function $H(\theta)$ is defined over the interval $(0, \pi)$, but is as yet unknown over the interval $(-\pi, 0)$. Furthermore it is supposed that the function can be expressed as a Fourier series, with certain constraints on the coefficients. In particular

$$
H(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where

$$
\alpha a_{n}+\beta b_{n}=c_{n}, \quad n=0,1,2, \cdots
$$

α and β are prescribed constants and the c_{n} a prescribed sequence. The question which can now be raised is whether these constraints automatically continue the function into the interval $(-\pi, 0)$. It will be shown that under certain conditions the continuation of $H(\theta)$ is unique almost everywhere.

There are two trivial special case namely if either α or β are allowed to become infinite. In these cases the proper continuation is as an odd or even function respectively.

A different, but equivalent, formulation is the following. Does the definition of $H(\theta)$ and the constraints on the Fourier coefficients a_{n} and b_{n} allow one to evaluate these coefficients? In order to be able to use the standard integral formulas for the coefficients $H(\theta)$ would have to be defined over an interval of length 2π. Over the interval $(0, \pi)$ the trigonometric functions are not orthogonal so that such integral formulas do not exist. One can show then that an equivalent statement is that the nonorthogonal set of functions $\left\{\sin \left(n x-\tan ^{-1} \alpha / \beta\right)\right\}$ is complete in $L_{2}(0, \pi)$, for $|\alpha| \neq|\beta|$. The case $|\alpha|=|\beta|$ requires some additional stipulations.

One can also formulate a similar problem involving a function defined over the interval ($0, \infty$), and constraints on the Fourier cosine and sine transforms.

In both of these case one can show that a unique continuation exists in the space of square-integrable functions for $|\alpha| \neq|\beta|$. In the case of the problem of the infinite interval one can explicitly demonstrate nonunique continuations in the space of nonintegrable functions.

